Description
My research centers on the design and fabrication of biomolecule-sensing devices that combine top-down and bottom-up fabrication processes and leverage the unique advantages of each approach. This allows for the scalable creation of devices with critical dimensions and surface properties that are tailored to target molecules at the nanoscale.
My first project focuses on a new strategy for preparing solid-state nanopore sensors for DNA sequencing. Challenges for existing nanopore approaches include specificity of detection, controllability of translocation, and scalability of fabrication. In a new solid-state pore architecture, top-down fabrication of an initial electrode gap embedded in a sealed nanochannel is followed by feedback-controlled electrochemical deposition of metal to shrink the gap and define the nanopore size. The resulting structure allows for the use of an electric field to control the motion of DNA through the pore and the direct detection of a tunnel current through a DNA molecule.
My second project focuses on top-down fabrication strategies for a fixed nanogap device to explore the electronic conductance of proteins. Here, a metal-insulator-metal junction can be fabricated with top-down fabrication techniques, and the subsequent electrode surfaces can be chemically modified with molecules that bind strongly to a target protein. When proteins bind to molecules on either side of the dielectric gap, a molecular junction is formed with observed conductances on the order of nanosiemens. These devices can be used in applications such as DNA sequencing or to gain insight into fundamental questions such as the mechanism of electron transport in proteins.
My first project focuses on a new strategy for preparing solid-state nanopore sensors for DNA sequencing. Challenges for existing nanopore approaches include specificity of detection, controllability of translocation, and scalability of fabrication. In a new solid-state pore architecture, top-down fabrication of an initial electrode gap embedded in a sealed nanochannel is followed by feedback-controlled electrochemical deposition of metal to shrink the gap and define the nanopore size. The resulting structure allows for the use of an electric field to control the motion of DNA through the pore and the direct detection of a tunnel current through a DNA molecule.
My second project focuses on top-down fabrication strategies for a fixed nanogap device to explore the electronic conductance of proteins. Here, a metal-insulator-metal junction can be fabricated with top-down fabrication techniques, and the subsequent electrode surfaces can be chemically modified with molecules that bind strongly to a target protein. When proteins bind to molecules on either side of the dielectric gap, a molecular junction is formed with observed conductances on the order of nanosiemens. These devices can be used in applications such as DNA sequencing or to gain insight into fundamental questions such as the mechanism of electron transport in proteins.
Details
Title
- Top-Down and Bottom-Up Strategies to Prepare Nanogap Sensors for Controlling and Characterizing Single Biomolecules
Contributors
- Sadar, Joshua Stephen (Author)
- Qing, Quan (Thesis advisor)
- Lindsay, Stuart (Committee member)
- Vaiana, Sara (Committee member)
- Ros, Robert (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Physics 2019