Description
Sustainable food systems have been studied extensively in recent times and the Food-Energy-Water (FEW) nexus framework has been one of the most common frameworks used. The dissertation intends to examine and quantitatively model the food system interaction with the energy system and the water system. Traditional FEW nexus studies have focused on food production alone. While this approach is informative, it is insufficient since food is extensively traded. Various food miles studies have highlighted the extensive virtual energy and virtual water footprint of food. This highlights the need for transport, and storage needs to be considered as part of the FEW framework. The Life cycle assessment (LCA) framework is the best available option to estimate the net energy and water exchange between the food, energy, and water systems. Climate plays an important role in food production as well as food preservation. Crops are very sensitive to temperature changes and it directly impacts a crop’s productivity. Changing temperatures directly impact crop productivity, and water demand. It is important to explore the feasibility of mitigation measures to keep in check increasing agricultural water demands. Conservation technologies may be able to provide the necessary energy and water savings. Even under varying climates it might be possible to meet demand for food through trade. The complex trade network might have the capacity to compensate for the produce lost due to climate change, and hence needs to be established. Re-visualizing the FEW nexus from the consumption perspective would better inform policy on exchange of constrained resources as well as carbon footprints. This puts the FEW nexus research space a step towards recreating the FEW nexus as a network of networks, that is, FEW-e (FEW exchange) nexus.
Details
Title
- Food, a global product: an enhanced FEW nexus approach
Contributors
- Natarajan, Mukunth (Author)
- Chester, Mikhail (Thesis advisor)
- Lobo, Jose (Committee member)
- Ruddell, Benjamin (Committee member)
- Fraser, Andrew (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2019
- bibliographyIncludes bibliographical references (pages 133-149)
- Field of study: Sustainability
Citation and reuse
Statement of Responsibility
by Mukunth Natarajan