157565-Thumbnail Image.png
Description
Mobile health (mHealth) applications (apps) hold tremendous potential for addressing chronic health conditions. Smartphones are now the most popular form of computing, and the ubiquitous “always with us, always on” nature of mobile technology makes them amenable to interventions aimed

Mobile health (mHealth) applications (apps) hold tremendous potential for addressing chronic health conditions. Smartphones are now the most popular form of computing, and the ubiquitous “always with us, always on” nature of mobile technology makes them amenable to interventions aimed and managing chronic disease. Several challenges exist, however, such as the difficulty in determining mHealth effects due to the rapidly changing nature of the technology and the challenges presented to existing methods of evaluation, and the ability to ensure end users consistently use the technology in order to achieve the desired effects. The latter challenge is in adherence, defined as the extent to which a patient conducts the activities defined in a clinical protocol (i.e. an intervention plan). Further, higher levels of adherence should lead to greater effects of the intervention (the greater fidelity to the protocol, the more benefit one should receive from the protocol). mHealth has limitations in these areas; the ability to have patients sustainably adhere to a protocol, and the ability to drive intervention effect sizes. My research considers personalized interventions, a new approach of study in the mHealth community, as a potential remedy to these limitations. Specifically, in the context of a pediatric preventative anxiety protocol, I introduce algorithms to drive greater levels of adherence and greater effect sizes by incorporating per-patient (personalized) information. These algorithms have been implemented within an existing mHealth app for middle school that has been successfully deployed in a school in the Phoenix Arizona metropolitan area. The number of users is small (n=3) so a case-by-case analysis of app usage is presented. In addition simulated user behaviors based on models of adherence and effects sizes over time are presented as a means to demonstrate the potential impact of personalized deployments on a larger scale.


Download restricted.

Details

Title
  • Adaptive mHealth interventions for improving youth responsiveness and clinical outcomes
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2019
    • bibliography
      Includes bibliographical references (pages 70-76)
    • Field of study: Computer science

    Citation and reuse

    Statement of Responsibility

    by Vishakha Singal

    Machine-readable links