Full metadata
Title
Evaluation of Properties of Triply Periodic Minimal Surface Structures Using ANSYS
Description
The advancements in additive manufacturing have made it possible to bring life to designs
that would otherwise exist only on paper. An excellent example of such designs
are the Triply Periodic Minimal Surface (TPMS) structures like Schwarz D, Schwarz
P, Gyroid, etc. These structures are self-sustaining, i.e. they require minimal supports
or no supports at all when 3D printed. These structures exist in stable form in
nature, like butterfly wings are made of Gyroids. Automotive and aerospace industry
have a growing demand for strong and light structures, which can be solved using
TPMS models. In this research we will try and understand some of the properties of
these Triply Periodic Minimal Surface (TPMS) structures and see how they perform
in comparison to the conventional models. The research was concentrated on the
mechanical, thermal and fluid flow properties of the Schwarz D, Gyroid and Spherical
Gyroid Triply Periodic Minimal Surface (TPMS) models in particular, other Triply
Periodic Minimal Surface (TPMS) models were not considered. A detailed finite
element analysis was performed on the mechanical and thermal properties using ANSYS
19.2 and the flow properties were analyzed using ANSYS Fluent under different
conditions.
that would otherwise exist only on paper. An excellent example of such designs
are the Triply Periodic Minimal Surface (TPMS) structures like Schwarz D, Schwarz
P, Gyroid, etc. These structures are self-sustaining, i.e. they require minimal supports
or no supports at all when 3D printed. These structures exist in stable form in
nature, like butterfly wings are made of Gyroids. Automotive and aerospace industry
have a growing demand for strong and light structures, which can be solved using
TPMS models. In this research we will try and understand some of the properties of
these Triply Periodic Minimal Surface (TPMS) structures and see how they perform
in comparison to the conventional models. The research was concentrated on the
mechanical, thermal and fluid flow properties of the Schwarz D, Gyroid and Spherical
Gyroid Triply Periodic Minimal Surface (TPMS) models in particular, other Triply
Periodic Minimal Surface (TPMS) models were not considered. A detailed finite
element analysis was performed on the mechanical and thermal properties using ANSYS
19.2 and the flow properties were analyzed using ANSYS Fluent under different
conditions.
Date Created
2019
Contributors
- Raja, Faisal (Author)
- Phelan, Patrick (Thesis advisor)
- Bhate, Dhruv (Committee member)
- Rykaczewski, Konrad (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
148 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.53888
Level of coding
minimal
Note
Masters Thesis Mechanical Engineering 2019
System Created
- 2019-05-15 12:35:55
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats