Description
Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of stable and efficient blue devices. In order to further the development of OLEDs and increase their commercial potential, innovative device architectures, novel emissive materials and high-energy hosts are designed and reported.
OLEDs employing step-wide graded-doped emissive layers were designed to improve charge balance and center the exciton formation zone leading to improved device performance. A red OLED with a peak efficiency of 16.9% and an estimated LT97 over 2,000 hours at 1,000 cd/m2 was achieved. Employing a similar structure, a sky-blue OLED was demonstrated with a peak efficiency of 17.4% and estimated LT70 over 1,300 hours at 1,000 cd/m2. Furthermore, the sky-blue OLEDs color was improved to CIE coordinates of (0.15, 0.25) while maintaining an efficiency of 16.9% and estimated LT70 over 600 hours by incorporating a fluorescent sensitizer. These devices represent literature records at the time of publication for efficient and stable platinum phosphorescent OLEDs.
A newly developed class of emitters, metal-assisted delayed-fluorescence (MADF), are demonstrated to achieve higher-energy emission from a relatively low triplet energy. A green MADF device reaches a peak efficiency of 22% with an estimated LT95 over 350 hours at 1,000 cd/m2. Additionally, a blue charge confined OLED of PtON1a-tBu demonstrated a peak efficiency above 20%, CIE coordinated of (0.16, 0.27), and emission onset at 425 nm.
High triplet energy hosts are required for the realization of stable and efficient deep blue emission. A rigid “M”-type carbazole/fluorene hybrid called mDCzPF and a carbazole/9-silafluorene hybrid called mDCzPSiF are demonstrated to have high triplet energies ET=2.88 eV and 3.03 eV respectively. Both hosts are demonstrated to have reasonable stability and can serve as a template for future material design. The techniques presented here demonstrate alternative approaches for improving the performance of OLED devices and help to bring this technology closer to widespread commercialization.
OLEDs employing step-wide graded-doped emissive layers were designed to improve charge balance and center the exciton formation zone leading to improved device performance. A red OLED with a peak efficiency of 16.9% and an estimated LT97 over 2,000 hours at 1,000 cd/m2 was achieved. Employing a similar structure, a sky-blue OLED was demonstrated with a peak efficiency of 17.4% and estimated LT70 over 1,300 hours at 1,000 cd/m2. Furthermore, the sky-blue OLEDs color was improved to CIE coordinates of (0.15, 0.25) while maintaining an efficiency of 16.9% and estimated LT70 over 600 hours by incorporating a fluorescent sensitizer. These devices represent literature records at the time of publication for efficient and stable platinum phosphorescent OLEDs.
A newly developed class of emitters, metal-assisted delayed-fluorescence (MADF), are demonstrated to achieve higher-energy emission from a relatively low triplet energy. A green MADF device reaches a peak efficiency of 22% with an estimated LT95 over 350 hours at 1,000 cd/m2. Additionally, a blue charge confined OLED of PtON1a-tBu demonstrated a peak efficiency above 20%, CIE coordinated of (0.16, 0.27), and emission onset at 425 nm.
High triplet energy hosts are required for the realization of stable and efficient deep blue emission. A rigid “M”-type carbazole/fluorene hybrid called mDCzPF and a carbazole/9-silafluorene hybrid called mDCzPSiF are demonstrated to have high triplet energies ET=2.88 eV and 3.03 eV respectively. Both hosts are demonstrated to have reasonable stability and can serve as a template for future material design. The techniques presented here demonstrate alternative approaches for improving the performance of OLED devices and help to bring this technology closer to widespread commercialization.
Details
Title
- High-performance organic light emitting diodes
Contributors
- Klimes, Kody George (Author)
- Li, Jian (Thesis advisor)
- Adams, James (Committee member)
- Wang, Liping (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2019
- bibliographyIncludes bibliographical references (pages 136-148)
- Field of study: Materials science and engineering
Citation and reuse
Statement of Responsibility
by Kody George Klimes