157436-Thumbnail Image.png
Description
The universe since its formation 13.7 billion years ago has undergone many changes. It began with expanding and cooling down to a temperature low enough for formation of atoms of neutral Hydrogen and Helium gas. Stronger gravitational pull in certain

The universe since its formation 13.7 billion years ago has undergone many changes. It began with expanding and cooling down to a temperature low enough for formation of atoms of neutral Hydrogen and Helium gas. Stronger gravitational pull in certain regions caused some regions to be denser and hotter than others. These regions kept getting denser and hotter until they had centers hot enough to burn the hydrogen and form the first stars, which ended the Dark Ages. These stars did not live long and underwent violent explosions. These explosions and the photons from the stars caused the hydrogen gas around them to ionize. This went on until all the hydrogen gas in the universe was ionized. This period is known as Epoch Of Reionization. Studying the Epoch Of Reionization will help understand the formation of these early stars, the timeline of the reionization and the formation of the stars and galaxies as we know them today. Studying the radiations from the 21cm line in neutral hydrogen, redshifted to below 200MHz can help determine details such as velocity, density and temperature of these early stars and the media around them.

The EDGES program is one of the many programs that aim to study the Epoch of Reionization. It is a ground-based project deployed in Murchison Radio-Astronomy Observatory in Western Australia. At ground level the Radio Frequency Interference from the ionosphere and various man-made transmitters in the same frequency range as the EDGES receiver make measurements, receiver design and extraction of useful data from received signals difficult. Putting the receiver in space can help majorly escape the RFI. The EDGES In Space is a proposed project that aims at designing a receiver similar to the EDGES receiver but for a cubesat.

This thesis aims at designing a prototype receiver that is similar in architecture to the EDGES low band receiver (50-100MHz) but is significantly smaller in size (small enough to fit on a PCB for a cubesat) while keeping in mind different considerations that affect circuit performance in space.


Download restricted.

Details

Title
  • Design of a Cubesat Based Radio Receiver to Detect the Global EoR Signature
Contributors
Date Created
2019
Resource Type
  • Text
  • Collections this item is in
    Note
    • Masters Thesis Electrical Engineering 2019

    Machine-readable links