Description
This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic and without the need to adjust rigid, mechanical components. The robot utilizes inflatable soft actuators with an adjustable radius which, when pressurized, can provide a radial force, effectively anchoring the device in place. Additional soft inflatable actuators translate forces along the center axis of the device which creates forward locomotion when used in conjunction with the radial actuation. Furthermore, a bio-inspired control algorithm for locomotion allows the robot to maneuver through a pipe by mimicking the peristaltic gait of an inchworm. This thesis provides an examination and evaluation of the structure and behavior of the inflatable actuators through computational modeling of the material and design, as well as the experimental data of the forces and displacements generated by the actuators. The theoretical results are contrasted with/against experimental data utilizing a physical prototype of the soft robot. The design is anticipated to enable compliant robots to conform to the space offered to them and overcome occlusions from accumulated solids found in pipes. The intent of the device is to be used for inspecting existing pipelines owned and operated by Salt River Project, a Phoenix-area water and electricity utility provider.
Details
Title
- A Novel, Bio-Inspired, Soft Robot for Water Pipe Inspection
Contributors
- Adams, Wade Silas (Author)
- Aukes, Daniel (Thesis advisor)
- Sugar, Thomas (Committee member)
- Zhang, Wenlong (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Resource Type
Collections this item is in
Note
- Masters Thesis Engineering 2019