Description
In my thesis, I characterize multi-nuclear manganese cofactors in modified reaction
centers from the bacterium Rhodobacter sphaeroides. I characterized interactions
between a variety of secondary electron donors and modified reaction centers. In Chapter
1, I provide the research aims, background, and a summary of the chapters in my thesis.
In Chapter 2 and Chapter 3, I present my work with artificial four-helix bundles as
secondary electron donors to modified bacterial reaction centers. In Chapter 2, I
characterize the binding and energetics of the P1 Mn-protein, as a secondary electron
donor to modified reaction centers. In Chapter 3, I present the activity of a suite of four
helix bundles behaving as secondary electron donors to modified reaction centers. In
Chapter 4, I characterize a suite of modified reaction centers designed to bind and oxidize
manganese. I present work that characterizes bound manganese oxides as secondary
electron donors to the oxidized bacteriochlorophyll dimer in modified reaction centers. In
Chapter 5, I present my conclusions with a short description of future work in
characterizing multiple electron transfers from a multi-nuclear manganese cofactor in
modified reaction centers. To conclude, my thesis presents a characterization of a variety
of secondary electron donors to modified reaction centers that establish the feasibility to
characterize multiple turnovers from a multi-nuclear manganese cofactor.
centers from the bacterium Rhodobacter sphaeroides. I characterized interactions
between a variety of secondary electron donors and modified reaction centers. In Chapter
1, I provide the research aims, background, and a summary of the chapters in my thesis.
In Chapter 2 and Chapter 3, I present my work with artificial four-helix bundles as
secondary electron donors to modified bacterial reaction centers. In Chapter 2, I
characterize the binding and energetics of the P1 Mn-protein, as a secondary electron
donor to modified reaction centers. In Chapter 3, I present the activity of a suite of four
helix bundles behaving as secondary electron donors to modified reaction centers. In
Chapter 4, I characterize a suite of modified reaction centers designed to bind and oxidize
manganese. I present work that characterizes bound manganese oxides as secondary
electron donors to the oxidized bacteriochlorophyll dimer in modified reaction centers. In
Chapter 5, I present my conclusions with a short description of future work in
characterizing multiple electron transfers from a multi-nuclear manganese cofactor in
modified reaction centers. To conclude, my thesis presents a characterization of a variety
of secondary electron donors to modified reaction centers that establish the feasibility to
characterize multiple turnovers from a multi-nuclear manganese cofactor.
Details
Title
- Characterization of multi-nuclear manganese-binding bacterial reaction centers from Rhodobacter sphaeroides
Contributors
- Espiritu, Eduardo (Author)
- Allen, James P. (Thesis advisor)
- Jones, Anne K (Committee member)
- Redding, Kevin (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2019
- bibliographyIncludes bibliographical references (pages 96-105)
- Field of study: Biochemistry
Citation and reuse
Statement of Responsibility
by Eduardo Espiritu