Full metadata
Title
Microanalysis for Oxygen Fugacity by Secondary Ion Mass Spectrometry
Description
Oxygen fugacity (ƒO2) is a thermodynamic variable used to represent the redox state of a material or a system. It is equivalent to the partial pressure of oxygen in a particular environment corrected for the non-ideal behavior of the gas. ƒO2 is often used to indicate the potential for iron to occur in a more oxidized or reduced state at a particular temperature and pressure in a natural system. Secondary ion mass spectrometry (SIMS) is a powerful analytical instrument that can be used to analyze elemental and isotopic compositional information about microscopic features within solid materials. SIMS analyses of the secondary ion energy distribution of semi-pure metals demonstrate that the energy spectrum of individual mass lines can provide information about alterations in its surface environment.
The application of high-resolution (see Appendix C) energy spectrum calibrations to natural ilmenite led to the investigation of zirconium (90Zr+) and niobium (93Nb+) as potential indicators of sample ƒO2. Energy spectrum measurements were performed on an array of ilmenite crystals from the earth’s upper mantle retrieved from kimberlites and from a reduced meteorite. In all studied materials, variability in the peak shape and width of the energy spectra has been correlated with inferred sample ƒO2. The best descriptor of this relationship is the full-width at half-maximum (FWHM; see Appendix C) of the energy spectra for each sample. It has been estimated that a 1eV change in the FWHM of 93Nb+ energy spectra is roughly equivalent to 1 log unit ƒO2. Simple estimates of precision suggest the FWHM values can be trusted to 1eV and sample ƒO2 can be predicted to ±1 log unit, assuming the temperature of formation is known.
The work of this thesis also explores the applicability of this technique beyond analysis of semi-pure metals and ilmenite crystals from kimberlites. This technique was applied to titanium oxides experimentally formed at known ƒO2 as well as an ilmenite crystal that showed compositional variations across the grain (i.e., core to rim chemical variations). Analyses of titanium oxides formed at known ƒO2 agree with the estimation that 1 eV change in the FWHM of 93Nb+ is equivalent to ~1 log unit ƒO2 (in all cases but one); this is also true for analyses of a natural ilmenite crystal with compositional variations across the grain.
The application of high-resolution (see Appendix C) energy spectrum calibrations to natural ilmenite led to the investigation of zirconium (90Zr+) and niobium (93Nb+) as potential indicators of sample ƒO2. Energy spectrum measurements were performed on an array of ilmenite crystals from the earth’s upper mantle retrieved from kimberlites and from a reduced meteorite. In all studied materials, variability in the peak shape and width of the energy spectra has been correlated with inferred sample ƒO2. The best descriptor of this relationship is the full-width at half-maximum (FWHM; see Appendix C) of the energy spectra for each sample. It has been estimated that a 1eV change in the FWHM of 93Nb+ energy spectra is roughly equivalent to 1 log unit ƒO2. Simple estimates of precision suggest the FWHM values can be trusted to 1eV and sample ƒO2 can be predicted to ±1 log unit, assuming the temperature of formation is known.
The work of this thesis also explores the applicability of this technique beyond analysis of semi-pure metals and ilmenite crystals from kimberlites. This technique was applied to titanium oxides experimentally formed at known ƒO2 as well as an ilmenite crystal that showed compositional variations across the grain (i.e., core to rim chemical variations). Analyses of titanium oxides formed at known ƒO2 agree with the estimation that 1 eV change in the FWHM of 93Nb+ is equivalent to ~1 log unit ƒO2 (in all cases but one); this is also true for analyses of a natural ilmenite crystal with compositional variations across the grain.
Date Created
2019
Contributors
- Dillon, Sarah Marie (Author)
- Hervig, Richard L (Thesis advisor)
- Shim, Sang-Heon (Committee member)
- Williams, Peter (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
89 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.53643
Level of coding
minimal
Note
Masters Thesis Geological Sciences 2019
System Created
- 2019-05-15 12:28:32
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats