Description
Non-line-of-sight (NLOS) imaging of objects not visible to either the camera or illumina-
tion source is a challenging task with vital applications including surveillance and robotics.
Recent NLOS reconstruction advances have been achieved using time-resolved measure-
ments. Acquiring these time-resolved measurements requires expensive and specialized
detectors and laser sources. In work proposes a data-driven approach for NLOS 3D local-
ization requiring only a conventional camera and projector. The localisation is performed
using a voxelisation and a regression problem. Accuracy of greater than 90% is achieved
in localizing a NLOS object to a 5cm × 5cm × 5cm volume in real data. By adopting
the regression approach an object of width 10cm to localised to approximately 1.5cm. To
generalize to line-of-sight (LOS) scenes with non-planar surfaces, an adaptive lighting al-
gorithm is adopted. This algorithm, based on radiosity, identifies and illuminates scene
patches in the LOS which most contribute to the NLOS light paths, and can factor in sys-
tem power constraints. Improvements ranging from 6%-15% in accuracy with a non-planar
LOS wall using adaptive lighting is reported, demonstrating the advantage of combining
the physics of light transport with active illumination for data-driven NLOS imaging.
tion source is a challenging task with vital applications including surveillance and robotics.
Recent NLOS reconstruction advances have been achieved using time-resolved measure-
ments. Acquiring these time-resolved measurements requires expensive and specialized
detectors and laser sources. In work proposes a data-driven approach for NLOS 3D local-
ization requiring only a conventional camera and projector. The localisation is performed
using a voxelisation and a regression problem. Accuracy of greater than 90% is achieved
in localizing a NLOS object to a 5cm × 5cm × 5cm volume in real data. By adopting
the regression approach an object of width 10cm to localised to approximately 1.5cm. To
generalize to line-of-sight (LOS) scenes with non-planar surfaces, an adaptive lighting al-
gorithm is adopted. This algorithm, based on radiosity, identifies and illuminates scene
patches in the LOS which most contribute to the NLOS light paths, and can factor in sys-
tem power constraints. Improvements ranging from 6%-15% in accuracy with a non-planar
LOS wall using adaptive lighting is reported, demonstrating the advantage of combining
the physics of light transport with active illumination for data-driven NLOS imaging.
Download count: 1
Details
Title
- Adaptive Lighting for Data-Driven Non-Line-Of-Sight 3D Localization
Contributors
- Chandran, Sreenithy (Author)
- Jayasuriya, Suren (Thesis advisor)
- Turaga, Pavan (Committee member)
- Dasarathy, Gautam (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Resource Type
Collections this item is in
Note
-
Masters Thesis Electrical Engineering 2019