Full metadata
Title
Robustness of the General Factor Mean Difference Estimation in Bifactor Ordinal Data
Description
A simulation study was conducted to explore the robustness of general factor mean difference estimation in bifactor ordered-categorical data. In the No Differential Item Functioning (DIF) conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of the general factor mean difference, and the size of specific factor loadings; in data analysis, misspecification conditions were introduced in which the generated bifactor data were fit using a unidimensional model, and/or ordered-categorical data were treated as continuous data. In the DIF conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of latent mean difference for the general factor, the type of item parameters that had DIF, and the magnitude of DIF; the data analysis conditions varied in whether or not setting equality constraints on the noninvariant item parameters.
Results showed that falsely fitting bifactor data using unidimensional models or failing to account for DIF in item parameters resulted in estimation bias in the general factor mean difference, while treating ordinal data as continuous had little influence on the estimation bias as long as there was no severe model misspecification. The extent of estimation bias produced by misspecification of bifactor datasets with unidimensional models was mainly determined by the degree of unidimensionality (i.e., size of specific factor loadings) and the general factor mean difference size. When the DIF was present, the estimation accuracy of the general factor mean difference was completely robust to ignoring noninvariance in specific factor loadings while it was very sensitive to failing to account for DIF in threshold parameters. With respect to ignoring the DIF in general factor loadings, the estimation bias of the general factor mean difference was substantial when the DIF was -0.15, and it can be negligible for smaller sizes of DIF. Despite the impact of model misspecification on estimation accuracy, the power to detect the general factor mean difference was mainly influenced by the sample size and effect size. Serious Type I error rate inflation only occurred when the DIF was present in threshold parameters.
Results showed that falsely fitting bifactor data using unidimensional models or failing to account for DIF in item parameters resulted in estimation bias in the general factor mean difference, while treating ordinal data as continuous had little influence on the estimation bias as long as there was no severe model misspecification. The extent of estimation bias produced by misspecification of bifactor datasets with unidimensional models was mainly determined by the degree of unidimensionality (i.e., size of specific factor loadings) and the general factor mean difference size. When the DIF was present, the estimation accuracy of the general factor mean difference was completely robust to ignoring noninvariance in specific factor loadings while it was very sensitive to failing to account for DIF in threshold parameters. With respect to ignoring the DIF in general factor loadings, the estimation bias of the general factor mean difference was substantial when the DIF was -0.15, and it can be negligible for smaller sizes of DIF. Despite the impact of model misspecification on estimation accuracy, the power to detect the general factor mean difference was mainly influenced by the sample size and effect size. Serious Type I error rate inflation only occurred when the DIF was present in threshold parameters.
Date Created
2019
Contributors
- Liu, Yixing (Author)
- Thompson, Marilyn (Thesis advisor)
- Levy, Roy (Committee member)
- O’Rourke, Holly (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
x, 218 pages : illustrations
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.53569
Statement of Responsibility
by Yixing Liu
Description Source
Viewed on September 30, 2019
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2019
bibliography
Includes bibliographical references (pages 140-148)
Field of study: Educational psychology
System Created
- 2019-05-15 12:26:07
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats