Full metadata
Title
Water Supply Infrastructure Modeling and Control under Extreme Drought and/or Limited Power Availability
Description
The phrase water-energy nexus is commonly used to describe the inherent and critical interdependencies between the electric power system and the water supply systems (WSS). The key interdependencies between the two systems are the power plant’s requirement of water for the cooling cycle and the water system’s need of electricity for pumping for water supply. While previous work has considered the dependency of WSS on the electrical power, this work incorporates into an optimization-simulation framework, consideration of the impact of short and long-term limited availability of water and/or electrical energy.
This research focuses on the water supply system (WSS) facet of the multi-faceted optimization and control mechanism developed for an integrated water – energy nexus system under U.S. National Science Foundation (NSF) project 029013-0010 CRISP Type 2 – Resilient cyber-enabled electric energy and water infrastructures modeling and control under extreme mega drought scenarios. A water supply system (WSS) conveys water from sources (such as lakes, rivers, dams etc.) to the treatment plants and then to users via the water distribution systems (WDS) and/or water supply canal systems (WSCS). Optimization-simulation methodologies are developed for the real-time operation of water supply systems (WSS) under critical conditions of limited electrical energy and/or water availability due to emergencies such as extreme drought conditions, electric grid failure, and other severe conditions including natural and manmade disasters. The coupling between WSS and the power system was done through alternatively exchanging data between the power system and WSS simulations via a program control overlay developed in python.
A new methodology for WDS infrastructural-operational resilience (IOR) computation was developed as a part of this research to assess the real-time performance of the WDS under emergency conditions. The methodology combines operational resilience and component level infrastructural robustness to provide a comprehensive performance assessment tool.
The optimization-simulation and resilience computation methodologies developed were tested for both hypothetical and real example WDS and WSCS, with results depicting improved resilience for operations of the WSS under normal and emergency conditions.
This research focuses on the water supply system (WSS) facet of the multi-faceted optimization and control mechanism developed for an integrated water – energy nexus system under U.S. National Science Foundation (NSF) project 029013-0010 CRISP Type 2 – Resilient cyber-enabled electric energy and water infrastructures modeling and control under extreme mega drought scenarios. A water supply system (WSS) conveys water from sources (such as lakes, rivers, dams etc.) to the treatment plants and then to users via the water distribution systems (WDS) and/or water supply canal systems (WSCS). Optimization-simulation methodologies are developed for the real-time operation of water supply systems (WSS) under critical conditions of limited electrical energy and/or water availability due to emergencies such as extreme drought conditions, electric grid failure, and other severe conditions including natural and manmade disasters. The coupling between WSS and the power system was done through alternatively exchanging data between the power system and WSS simulations via a program control overlay developed in python.
A new methodology for WDS infrastructural-operational resilience (IOR) computation was developed as a part of this research to assess the real-time performance of the WDS under emergency conditions. The methodology combines operational resilience and component level infrastructural robustness to provide a comprehensive performance assessment tool.
The optimization-simulation and resilience computation methodologies developed were tested for both hypothetical and real example WDS and WSCS, with results depicting improved resilience for operations of the WSS under normal and emergency conditions.
Date Created
2019
Contributors
- Khatavkar, Puneet (Author)
- Mays, Larry W. (Thesis advisor)
- Vittal, Vijay (Committee member)
- Mascaro, Giuseppe (Committee member)
- Fox, Peter (Committee member)
- Zhang, Junshan (Committee member)
- Arizona State University (Publisher)
Topical Subject
- Water resources management
- Hydraulic engineering
- energy
- Drought management
- Genetic Algorithms for Water Distribution Systems Operations
- Infrastructural - Operational Resilience of Water Supply System Operations
- Optimization for Tank Turnover Rates
- Water - Energy Nexus
- Water Supply Canal System Operations
- Emergency power supply
- Emergency water supply
- Water-supply--Management.
Resource Type
Extent
xxii, 359 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.53499
Statement of Responsibility
by Puneet Khatavkar
Description Source
Viewed on September 25, 2019
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2019
bibliography
Includes bibliographical references (pages 289-303)
Field of study: Civil, environmental and sustainable engineering
System Created
- 2019-05-15 12:24:52
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats