Full metadata
Title
Engineering a proteoliposome transporter to capture radioactive cesium from water
Description
Radioactive cesium (137Cs), released from nuclear power plants and nuclear accidental releases, is a problem due to difficulties regarding its removal. Efforts have been focused on removing cesium and the remediation of the contaminated environment. Traditional treatment techniques include Prussian blue and nano zero-valent ion (nZVI) and nano-Fe/Cu particles to remove Cs from water; however, they are not efficient at removing Cs when present at low concentrations of about 10 parts-per-billion (ppb), typical of concentrations found in the radioactive contaminated sites.
The objective of this study was to develop an innovative and simple method to remove Cs+ present at low concentrations by engineering a proteoliposome transporter composed of an uptake protein reconstituted into a liposome vesicle. To achieve this, the uptake protein, Kup, from E. coli, was isolated through protein extraction and purification procedures. The new and simple extraction methodology developed in this study was highly efficient and resulted in purified Kup at ~1 mg/mL. A new method was also developed to insert purified Kup protein into the bilayers of liposome vesicles. Finally, removal of CsCl (10 and 100 ppb) was demonstrated by spiking the constructed proteoliposome in lab-fortified water, followed by incubation and ultracentrifugation, and measuring Cs+ with inductively coupled plasma mass spectrometry (ICP-MS).
The ICP-MS results from testing water contaminated with 100 ppb CsCl, revealed that adding 0.1 – 8 mL of Kup proteoliposome resulted in 0.29 – 12.7% Cs removal. Addition of 0.1 – 2 mL of proteoliposome to water contaminated with 10 ppb CsCl resulted in 0.65 – 3.43% Cs removal. These removal efficiencies were greater than the control, liposome with no protein.
A linear relationship was observed between the amount of proteoliposome added to the contaminated water and removal percentage. Consequently, by adding more volumes of proteoliposome, removal can be simply improved. This suggests that with ~ 60-70 mL of proteoliposome, removal of about 90% can be achieved. The novel technique developed herein is a contribution to emerging technologies in the water and wastewater treatment industry.
The objective of this study was to develop an innovative and simple method to remove Cs+ present at low concentrations by engineering a proteoliposome transporter composed of an uptake protein reconstituted into a liposome vesicle. To achieve this, the uptake protein, Kup, from E. coli, was isolated through protein extraction and purification procedures. The new and simple extraction methodology developed in this study was highly efficient and resulted in purified Kup at ~1 mg/mL. A new method was also developed to insert purified Kup protein into the bilayers of liposome vesicles. Finally, removal of CsCl (10 and 100 ppb) was demonstrated by spiking the constructed proteoliposome in lab-fortified water, followed by incubation and ultracentrifugation, and measuring Cs+ with inductively coupled plasma mass spectrometry (ICP-MS).
The ICP-MS results from testing water contaminated with 100 ppb CsCl, revealed that adding 0.1 – 8 mL of Kup proteoliposome resulted in 0.29 – 12.7% Cs removal. Addition of 0.1 – 2 mL of proteoliposome to water contaminated with 10 ppb CsCl resulted in 0.65 – 3.43% Cs removal. These removal efficiencies were greater than the control, liposome with no protein.
A linear relationship was observed between the amount of proteoliposome added to the contaminated water and removal percentage. Consequently, by adding more volumes of proteoliposome, removal can be simply improved. This suggests that with ~ 60-70 mL of proteoliposome, removal of about 90% can be achieved. The novel technique developed herein is a contribution to emerging technologies in the water and wastewater treatment industry.
Date Created
2018
Contributors
- Hakim Elahi, Sepideh (Author)
- Conroy-Ben, Otakuye (Thesis advisor)
- Abbaszadegan, Morteza (Committee member)
- Fox, Peter (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xii, 119 pages : color illustrations
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.51692
Statement of Responsibility
by Sepideh Hakim Elahi
Description Source
Viewed on March 28, 2019
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2018
bibliography
Includes bibliographical references (pages 82-94)
Field of study: Civil, Environmental and sustainable engineering
System Created
- 2019-02-01 07:03:38
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats