Description
Exposure of blood plasma/serum (P/S) to thawed conditions, greater than -30°C, can produce biomolecular changes that misleadingly impact measurements of clinical markers within archived samples. Reported here is a low sample-volume, dilute-and-shoot, intact protein mass spectrometric assay of albumin proteoforms called “ΔS-Cys-Albumin” that quantifies cumulative exposure of archived P/S samples to thawed conditions. The assay uses the fact that S-cysteinylation (oxidation) of albumin in P/S increases to a maximum value when exposed to temperatures greater than -30°C. The multi-reaction rate law that governs this albumin S-cysteinylation formation in P/S was determined and was shown to predict the rate of formation of S-cysteinylated albumin in P/S samples—a step that enables back-calculation of the time at which unknown P/S specimens have been exposed to room temperature. To emphasize the capability of this assay, a blind challenge demonstrated the ability of ΔS-Cys-Albumin to detect exposure of individual and grouped P/S samples to unfavorable storage conditions. The assay was also capable of detecting an anomaly in a case study of nominally pristine serum samples collected under NIH-sponsorship, demonstrating that empirical evidence is required to guarantee accurate knowledge of archived P/S biospecimen storage history.
The ex vivo glycation of human serum albumin was also investigated showing that P/S samples stored above their freezing point leads to significant increases in glycated albumin. These increases were found to occur within hours at room temperature, and within days at -20 °C. These increases continued over a period of 1-2 weeks at room temperature and over 200 days at -20 °C, ultimately resulting in a doubling of glycated albumin in both healthy and diabetic patients. It was also shown that samples stored at lower surface area-to-volume ratios or incubated under a nitrogen atmosphere experienced less rapid glucose adduction of albumin—suggesting a role for oxidative glycation in the ex vivo glycation of albumin.
The ex vivo glycation of human serum albumin was also investigated showing that P/S samples stored above their freezing point leads to significant increases in glycated albumin. These increases were found to occur within hours at room temperature, and within days at -20 °C. These increases continued over a period of 1-2 weeks at room temperature and over 200 days at -20 °C, ultimately resulting in a doubling of glycated albumin in both healthy and diabetic patients. It was also shown that samples stored at lower surface area-to-volume ratios or incubated under a nitrogen atmosphere experienced less rapid glucose adduction of albumin—suggesting a role for oxidative glycation in the ex vivo glycation of albumin.
Details
Title
- Ex Vivo Protein Post Translational Modifications in Poorly Stored Blood Plasma and Serum and their use as Markers of Biospecimen Integrity
Contributors
- Jeffs, Joshua W (Author)
- Borges, Chad R (Thesis advisor)
- Van Horn, Wade (Committee member)
- Williams, Peter (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Biochemistry 2018