156758-Thumbnail Image.png
Description
The structure of glass has been the subject of many studies, however some

details remained to be resolved. With the advancement of microscopic

imaging techniques and the successful synthesis of two-dimensional materials,

images of two-dimensional glasses (bilayers of silica) are now available,

confirming that

The structure of glass has been the subject of many studies, however some

details remained to be resolved. With the advancement of microscopic

imaging techniques and the successful synthesis of two-dimensional materials,

images of two-dimensional glasses (bilayers of silica) are now available,

confirming that this glass structure closely follows the continuous random

network model. These images provide complete in-plane structural information

such as ring correlations, and intermediate range order and with computer

refinement contain indirect information such as angular distributions, and

tilting.

This dissertation reports the first work that integrates the actual atomic

coordinates obtained from such images with structural refinement to enhance

the extracted information from the experimental data.

The correlations in the ring structure of silica bilayers are studied

and it is shown that short-range and intermediate-range order exist in such networks.

Special boundary conditions for finite experimental samples are designed so atoms

in the bulk sense they are part of an infinite network.

It is shown that bilayers consist of two identical layers separated by a

symmetry plane and the tilted tetrahedra, two examples of

added value through the structural refinement.

Finally, the low-temperature properties of glasses in two dimensions

are studied. This dissertation presents a new approach to find possible

two-level systems in silica bilayers employing the tools of rigidity theory

in isostatic systems.


Download restricted.
Download count: 7

Details

Title
  • Two-dimensional glasses
Contributors
Date Created
2018
Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2018
    • bibliography
      Includes bibliographical references (pages 118-131)
    • Field of study: Physics

    Citation and reuse

    Statement of Responsibility

    by Seyed Mahdi Sadjadi

    Machine-readable links