Full metadata
Title
Design of a Knee Exoskeleton for Gait Assistance
Description
The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared to the first version, is designed and fabricated.
A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and
safe.
A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N·m. It can be used as a rehabilitation device for patients affected with knee joint impairment.
A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N·m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg.
The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton.
An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices.
A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and
safe.
A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N·m. It can be used as a rehabilitation device for patients affected with knee joint impairment.
A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N·m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg.
The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton.
An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices.
Date Created
2018
Contributors
- Jhawar, Vaibhav (Author)
- Zhang, Wenlong (Thesis advisor)
- Sugar, Thomas G. (Committee member)
- Lee, Hyunglae (Committee member)
- Marvi, Hamidreza (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
66 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.50565
Level of coding
minimal
Note
Masters Thesis Mechanical Engineering 2018
System Created
- 2018-10-01 08:04:44
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats