Description
Peatlands represent 3% of the earth’s surface but have been estimated to contain up to 30% of all terrestrial soil organic carbon and release an estimated 40% of global atmospheric CH4 emissions. Contributors to the production of CH4 are methanogenic Archaea through a coupled metabolic dependency of end products released by heterotrophic bacteria within the soil in the absence of O2. To better understand how neighboring bacterial communities can influence methanogenesis, the isolation and physiological characterization of two novel isolates, one Methanoarchaeal isolate and one Acidobacterium isolate identified as QU12MR and R28S, respectively, were targeted in this present study. Co-culture growth in varying temperatures of the QU12MR isolate paired with an isolated Clostridium species labeled R32Q and the R28S isolate were also investigated for possible influences in CH4 production. Phylogenetic analysis of strain QU12MR was observed as a member of genus Methanobacterium sharing 98% identity similar to M. arcticum strain M2 and 99% identity similar to M. uliginosum strain P2St. Phylogenetic analysis of strain R28S was associated with genus Acidicapsa from the phylum Acidobacteria, sharing 97% identity to A. acidisoli strain SK-11 and 96% identity similarity to Occallatibacter savannae strain A2-1c. Bacterial co-culture growth and archaeal CH4 production was present in the five temperature ranges tested. However, bacterial growth and archaeal CH4 production was less than what was observed in pure culture analysis after 21 days of incubation.
Details
Title
- Isolation of anaerobic archaea and bacteria from Amazon peatlands and evaluation of syntrophic interactions
Contributors
- Ramirez, Zeni Elizia (Author)
- Cadillo-Quiroz, Hinsby (Thesis advisor)
- Roberson, Robert (Thesis advisor)
- Wang, Xuan (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2018
- bibliographyIncludes bibliographical references (pages 49-52)
- Field of study: Biology
Citation and reuse
Statement of Responsibility
by Zeni Elizia Ramirez