Full metadata
Title
Performance Analysis of a Double Crane with Finite Interoperational Buffer Capacity with Multiple Fidelity Simulations
Description
With trends of globalization on rise, predominant of the trades happen by sea, and experts have predicted an increase in trade volumes over the next few years. With increasing trade volumes, container ships’ upsizing is being carried out to meet the demand. But the problem with container ships’ upsizing is that the sea port terminals must be equipped adequately to improve the turnaround time otherwise the container ships’ upsizing would not yield the anticipated benefits. This thesis focus on a special type of a double automated crane set-up, with a finite interoperational buffer capacity. The buffer is placed in between the cranes, and the idea behind this research is to analyze the performance of the crane operations when this technology is adopted. This thesis proposes the approximation of this complex system, thereby addressing the computational time issue and allowing to efficiently analyze the performance of the system. The approach to model this system has been carried out in two phases. The first phase consists of the development of discrete event simulation model to make the system evolve over time. The challenges of this model are its high processing time which consists of performing large number of experimental runs, thus laying the foundation for the development of the analytical model of the system, and with respect to analytical modeling, a continuous time markov process approach has been adopted. Further, to improve the efficiency of the analytical model, a state aggregation approach is proposed. Thus, this thesis would give an insight on the outcomes of the two approaches and the behavior of the error space, and the performance of the models for the varying buffer capacities would reflect the scope of improvement in these kinds of operational set up.
Date Created
2018
Contributors
- Rengarajan, Sundaravaradhan (Author)
- Pedrielli, Giulia (Thesis advisor)
- Ju, Feng (Committee member)
- Wu, Teresa (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
103 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.50466
Level of coding
minimal
Note
Masters Thesis Industrial Engineering 2018
System Created
- 2018-10-01 08:01:08
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats