Full metadata
Title
Dependence of toxicity test results on sample removal methods of PV modules
Description
The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV modules lying in the landfills by 2050, that may not become a not-so-sustainable way of sourcing energy since all PV modules could contain certain amount of toxic substances. Currently in the United States, PV modules are categorized as general waste and can be disposed in landfills. However, potential leaching of toxic chemicals and materials, if any, from broken end-of-life modules may pose health or environmental risks. There is no standard procedure to remove samples from PV modules for chemical toxicity testing in the Toxicity Characteristic Leaching Procedure (TCLP) laboratories as per EPA 1311 standard. The main objective of this thesis is to develop an unbiased sampling approach for the TCLP testing of PV modules. The TCLP testing was concentrated only for the laminate part of the modules, as they are already existing recycling technologies for the frame and junction box components of PV modules. Four different sample removal methods have been applied to the laminates of five different module manufacturers: coring approach, cell-cut approach, strip-cut approach, and hybrid approach. These removed samples were sent to two different TCLP laboratories, and TCLP results were tested for repeatability within a lab and reproducibility between the labs. The pros and cons of each sample removal method have been explored and the influence of sample removal methods on the variability of TCLP results has been discussed. To reduce the variability of TCLP results to an acceptable level, additional improvements in the coring approach, the best of the four tested options, are still needed.
Date Created
2018
Contributors
- Leslie, Joswin (Author)
- Tamizhmani, Govindasamy (Thesis advisor)
- Srinivasan, Devarajan (Committee member)
- Kuitche, Joseph (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xi, 77 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.50430
Statement of Responsibility
by Joswin Leslie
Description Source
Viewed on June 1, 2020
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2018
bibliography
Includes bibliographical references (page 77)
Field of study: Engineering
System Created
- 2018-10-01 08:00:15
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats