Description
Medium access control (MAC) is a fundamental problem in wireless networks.
In ad-hoc wireless networks especially, many of the performance and scaling issues
these networks face can be attributed to their use of the core IEEE 802.11 MAC
protocol: distributed coordination function (DCF). Smoothed Airtime Linear Tuning
(SALT) is a new contention window tuning algorithm proposed to address some of the
deficiencies of DCF in 802.11 ad-hoc networks. SALT works alongside a new user level
and optimized implementation of REACT, a distributed resource allocation protocol,
to ensure that each node secures the amount of airtime allocated to it by REACT.
The algorithm accomplishes that by tuning the contention window size parameter
that is part of the 802.11 backoff process. SALT converges more tightly on airtime
allocations than a contention window tuning algorithm from previous work and this
increases fairness in transmission opportunities and reduces jitter more than either
802.11 DCF or the other tuning algorithm. REACT and SALT were also extended
to the multi-hop flow scenario with the introduction of a new airtime reservation
algorithm. With a reservation in place multi-hop TCP throughput actually increased
when running SALT and REACT as compared to 802.11 DCF, and the combination of
protocols still managed to maintain its fairness and jitter advantages. All experiments
were performed on a wireless testbed, not in simulation.
In ad-hoc wireless networks especially, many of the performance and scaling issues
these networks face can be attributed to their use of the core IEEE 802.11 MAC
protocol: distributed coordination function (DCF). Smoothed Airtime Linear Tuning
(SALT) is a new contention window tuning algorithm proposed to address some of the
deficiencies of DCF in 802.11 ad-hoc networks. SALT works alongside a new user level
and optimized implementation of REACT, a distributed resource allocation protocol,
to ensure that each node secures the amount of airtime allocated to it by REACT.
The algorithm accomplishes that by tuning the contention window size parameter
that is part of the 802.11 backoff process. SALT converges more tightly on airtime
allocations than a contention window tuning algorithm from previous work and this
increases fairness in transmission opportunities and reduces jitter more than either
802.11 DCF or the other tuning algorithm. REACT and SALT were also extended
to the multi-hop flow scenario with the introduction of a new airtime reservation
algorithm. With a reservation in place multi-hop TCP throughput actually increased
when running SALT and REACT as compared to 802.11 DCF, and the combination of
protocols still managed to maintain its fairness and jitter advantages. All experiments
were performed on a wireless testbed, not in simulation.
Details
Title
- Smoothed Airtime Linear Tuning and Optimized REACT with Multi-hop Extensions
Contributors
- Mellott, Matthew (Author)
- Syrotiuk, Violet (Thesis advisor)
- Colbourn, Charles (Committee member)
- Tinnirello, Ilenia (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
- Masters Thesis Computer Science 2018