Description
The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the cosmos. This work outlines an alternative method to investigating and identifying the presence of cosmic magnetic fields. This method searches for Faraday Rotation (FR) and specifically uses polarized CMB photons as back-light. I find that current generation CMB experiments may be not sensitive enough to detect FR but next generation experiments should be able to make highly significant detections. Identifying FR with the CMB will provide information on the component of magnetic fields along the line of sight of observation.
The 21cm emission from the hyperfine splitting of neutral Hydrogen in the early universe is predicted to provide precise information about the formation and evolution of cosmic structure, complementing the wealth of knowledge gained from the CMB.
21cm cosmology is a relatively new field, and precise measurements of the Epoch of Reionization (EoR) have not yet been achieved. In this work I present 2σ upper limits on the power spectrum of 21cm fluctuations (Δ²(k)) probed at the cosmological wave number k from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) 64 element deployment. I find upper limits on Δ²(k) in the range 0.3 < k < 0.6 h/Mpc to be (650 mK)², (450 mK)², (390 mK)², (250 mK)², (280mK)², (250 mK)² at redshifts z = 10.87, 9.93, 8.91, 8.37, 8.13 and 7.48 respectively
Building on the power spectrum analysis, I identify a major limiting factor in detecting the 21cm power spectrum.
This work is concluded by outlining a metric to evaluate the predisposition of redshifted 21cm interferometers to foreground contamination in power spectrum estimation. This will help inform the construction of future arrays and enable high fidelity imaging and
cross-correlation analysis with other high redshift cosmic probes like the CMB and other upcoming all sky surveys. I find future
arrays with uniform (u,v) coverage and small spectral evolution of their response in the (u,v,f) cube can minimize foreground leakage while pursuing 21cm imaging.
The 21cm emission from the hyperfine splitting of neutral Hydrogen in the early universe is predicted to provide precise information about the formation and evolution of cosmic structure, complementing the wealth of knowledge gained from the CMB.
21cm cosmology is a relatively new field, and precise measurements of the Epoch of Reionization (EoR) have not yet been achieved. In this work I present 2σ upper limits on the power spectrum of 21cm fluctuations (Δ²(k)) probed at the cosmological wave number k from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) 64 element deployment. I find upper limits on Δ²(k) in the range 0.3 < k < 0.6 h/Mpc to be (650 mK)², (450 mK)², (390 mK)², (250 mK)², (280mK)², (250 mK)² at redshifts z = 10.87, 9.93, 8.91, 8.37, 8.13 and 7.48 respectively
Building on the power spectrum analysis, I identify a major limiting factor in detecting the 21cm power spectrum.
This work is concluded by outlining a metric to evaluate the predisposition of redshifted 21cm interferometers to foreground contamination in power spectrum estimation. This will help inform the construction of future arrays and enable high fidelity imaging and
cross-correlation analysis with other high redshift cosmic probes like the CMB and other upcoming all sky surveys. I find future
arrays with uniform (u,v) coverage and small spectral evolution of their response in the (u,v,f) cube can minimize foreground leakage while pursuing 21cm imaging.
Download count: 2
Details
Title
- Techniques for the analysis and understanding of cosmic evolution
Contributors
- Kolopanis, Matthew John (Author)
- Bowman, Judd (Thesis advisor)
- Mauskopf, Philip (Thesis advisor)
- Lunardini, Cecilia (Committee member)
- Chamberlin, Ralph (Committee member)
- Vachaspati, Tanmay (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: Ph.D., Arizona State University, 2018
-
bibliographyIncludes bibliographical references (pages 116-139)
-
Field of study: Physics
Citation and reuse
Statement of Responsibility
by Matthew John Kolopanis