Full metadata
Title
Embedding Logic and Non-volatile Devices in CMOS Digital Circuits for Improving Energy Efficiency
Description
Static CMOS logic has remained the dominant design style of digital systems for
more than four decades due to its robustness and near zero standby current. Static
CMOS logic circuits consist of a network of combinational logic cells and clocked sequential
elements, such as latches and flip-flops that are used for sequencing computations
over time. The majority of the digital design techniques to reduce power, area, and
leakage over the past four decades have focused almost entirely on optimizing the
combinational logic. This work explores alternate architectures for the flip-flops for
improving the overall circuit performance, power and area. It consists of three main
sections.
First, is the design of a multi-input configurable flip-flop structure with embedded
logic. A conventional D-type flip-flop may be viewed as realizing an identity function,
in which the output is simply the value of the input sampled at the clock edge. In
contrast, the proposed multi-input flip-flop, named PNAND, can be configured to
realize one of a family of Boolean functions called threshold functions. In essence,
the PNAND is a circuit implementation of the well-known binary perceptron. Unlike
other reconfigurable circuits, a PNAND can be configured by simply changing the
assignment of signals to its inputs. Using a standard cell library of such gates, a technology
mapping algorithm can be applied to transform a given netlist into one with
an optimal mixture of conventional logic gates and threshold gates. This approach
was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier
in 65nm LP technology. Simulation and chip measurements show more than 30%
improvement in dynamic power and more than 20% reduction in core area.
The functional yield of the PNAND reduces with geometry and voltage scaling.
The second part of this research investigates the use of two mechanisms to improve
the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM
devices for low voltage operation.
The third part of this research focused on the design of flip-flops with non-volatile
storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated
with both conventional D-flipflop and the PNAND circuits to implement non-volatile
logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of
system locally when a power interruption occurs. However, manufacturing variations
in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading
to an overly pessimistic design and consequently, higher energy consumption. A
detailed analysis of the design trade-offs in the driver circuitry for performing backup
and restore, and a novel method to design the energy optimal driver for a given yield is
presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented,
in which the backup time is determined on a per-chip basis, resulting in minimizing
the energy wastage and satisfying the yield constraint. To achieve a yield of 98%,
the conventional approach would have to expend nearly 5X more energy than the
minimum required, whereas the proposed tunable approach expends only 26% more
energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are
designed with the same backup and restore circuitry in 65nm technology. The embedded
logic in NV-TLFF compensates performance overhead of NVL. This leads to the
possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and-
accumulate (MAC) unit is designed to demonstrate the performance benefits of the
proposed architecture. Based on the results of HSPICE simulations, the MAC circuit
with the proposed NV-TLFF cells is shown to consume at least 20% less power and
area as compared to the circuit designed with conventional DFFs, without sacrificing
any performance.
more than four decades due to its robustness and near zero standby current. Static
CMOS logic circuits consist of a network of combinational logic cells and clocked sequential
elements, such as latches and flip-flops that are used for sequencing computations
over time. The majority of the digital design techniques to reduce power, area, and
leakage over the past four decades have focused almost entirely on optimizing the
combinational logic. This work explores alternate architectures for the flip-flops for
improving the overall circuit performance, power and area. It consists of three main
sections.
First, is the design of a multi-input configurable flip-flop structure with embedded
logic. A conventional D-type flip-flop may be viewed as realizing an identity function,
in which the output is simply the value of the input sampled at the clock edge. In
contrast, the proposed multi-input flip-flop, named PNAND, can be configured to
realize one of a family of Boolean functions called threshold functions. In essence,
the PNAND is a circuit implementation of the well-known binary perceptron. Unlike
other reconfigurable circuits, a PNAND can be configured by simply changing the
assignment of signals to its inputs. Using a standard cell library of such gates, a technology
mapping algorithm can be applied to transform a given netlist into one with
an optimal mixture of conventional logic gates and threshold gates. This approach
was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier
in 65nm LP technology. Simulation and chip measurements show more than 30%
improvement in dynamic power and more than 20% reduction in core area.
The functional yield of the PNAND reduces with geometry and voltage scaling.
The second part of this research investigates the use of two mechanisms to improve
the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM
devices for low voltage operation.
The third part of this research focused on the design of flip-flops with non-volatile
storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated
with both conventional D-flipflop and the PNAND circuits to implement non-volatile
logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of
system locally when a power interruption occurs. However, manufacturing variations
in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading
to an overly pessimistic design and consequently, higher energy consumption. A
detailed analysis of the design trade-offs in the driver circuitry for performing backup
and restore, and a novel method to design the energy optimal driver for a given yield is
presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented,
in which the backup time is determined on a per-chip basis, resulting in minimizing
the energy wastage and satisfying the yield constraint. To achieve a yield of 98%,
the conventional approach would have to expend nearly 5X more energy than the
minimum required, whereas the proposed tunable approach expends only 26% more
energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are
designed with the same backup and restore circuitry in 65nm technology. The embedded
logic in NV-TLFF compensates performance overhead of NVL. This leads to the
possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and-
accumulate (MAC) unit is designed to demonstrate the performance benefits of the
proposed architecture. Based on the results of HSPICE simulations, the MAC circuit
with the proposed NV-TLFF cells is shown to consume at least 20% less power and
area as compared to the circuit designed with conventional DFFs, without sacrificing
any performance.
Date Created
2018
Contributors
- Yang, Jinghua (Author)
- Vrudhula, Sarma (Thesis advisor)
- Barnaby, Hugh (Committee member)
- Cao, Yu (Committee member)
- Seo, Jae-Sun (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
180 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.49046
Level of coding
minimal
Note
Doctoral Dissertation Electrical Engineering 2018
System Created
- 2018-06-01 08:00:59
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats