Description
Immunosignature is a technology that retrieves information from the immune system. The technology is based on microarrays with peptides chosen from random sequence space. My thesis focuses on improving the Immunosignature platform and using Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization of the immunosignature platform by introducing scoring metrics to select optimal parameters, considering performance as well as practicality. Next, I primarily worked on identifying a signature shared across various pathogens that can distinguish them from the healthy population. I further retrieved consensus epitopes from the disease common signature and proposed that most pathogens could share the signature by studying the enrichment of the common signature in the pathogen proteomes. Following this, I worked on studying cancer samples from different stages and correlated the immune response with whether the epitope presented by tumor is similar to the pathogen proteome. An effective immune response is defined as an antibody titer increasing followed by decrease, suggesting elimination of the epitope. I found that an effective immune response usually correlates with epitopes that are more similar to pathogens. This suggests that the immune system might occupy a limited space and can be effective against only certain epitopes that have similarity with pathogens. I then participated in the attempt to solve the antibiotic resistance problem by developing a classification algorithm that can distinguish bacterial versus viral infection. This algorithm outperforms other currently available classification methods. Finally, I worked on the concept of deriving a single number to represent all the data on the immunosignature platform. This is in resemblance to the concept of temperature, which is an approximate measurement of whether an individual is healthy. The measure of Immune Entropy was found to work best as a single measurement to describe the immune system information derived from the immunosignature. Entropy is relatively invariant in healthy population, but shows significant differences when comparing healthy donors with patients either infected with a pathogen or have cancer.
Details
Title
- Use of large, immunosignature databases to pose new questions about infection and health status
Contributors
- Wang, Lu (Author)
- Johnston, Stephen (Thesis advisor)
- Stafford, Phillip (Committee member)
- Buetow, Kenneth (Committee member)
- McFadden, Grant (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2018
- bibliographyIncludes bibliographical references (pages 135-158)
- Field of study: Molecular and cellular biology
Citation and reuse
Statement of Responsibility
by Lu Wang