Description
The flexibility in power system networks is not fully modeled in existing real-time contingency analysis (RTCA) and real-time security-constrained economic dispatch (RT SCED) applications. Thus, corrective transmission switching (CTS) is proposed in this dissertation to enable RTCA and RT SCED to take advantage of the flexibility in the transmission system in a practical way.
RTCA is first conducted to identify critical contingencies that may cause violations. Then, for each critical contingency, CTS is performed to determine the beneficial switching actions that can reduce post-contingency violations. To reduce computational burden, fast heuristic algorithms are proposed to generate candidate switching lists. Numerical simulations performed on three large-scale realistic power systems (TVA, ERCOT, and PJM) demonstrate that CTS can significantly reduce post-contingency violations. Parallel computing can further reduce the solution time.
RT SCED is to eliminate the actual overloads and potential post-contingency overloads identified by RTCA. Procedure-A, which is consistent with existing industry practices, is proposed to connect RTCA and RT SCED. As CTS can reduce post-contingency violations, higher branch limits, referred to as pseudo limits, may be available for some contingency-case network constraints. Thus, Procedure-B is proposed to take advantage of the reliability benefits provided by CTS. With the proposed Procedure-B, CTS can be modeled in RT SCED implicitly through the proposed pseudo limits for contingency-case network constraints, which requires no change to existing RT SCED tools. Numerical simulations demonstrate that the proposed Procedure-A can effectively eliminate the flow violations reported by RTCA and that the proposed Procedure-B can reduce most of the congestion cost with consideration of CTS.
The system status may be inaccurately estimated due to false data injection (FDI) cyber-attacks, which may mislead operators to adjust the system improperly and cause network violations. Thus, a two-stage FDI detection (FDID) approach, along with several metrics and an alert system, is proposed in this dissertation to detect FDI attacks. The first stage is to determine whether the system is under attack and the second stage would identify the target branch. Numerical simulations demonstrate the effectiveness of the proposed two-stage FDID approach.
RTCA is first conducted to identify critical contingencies that may cause violations. Then, for each critical contingency, CTS is performed to determine the beneficial switching actions that can reduce post-contingency violations. To reduce computational burden, fast heuristic algorithms are proposed to generate candidate switching lists. Numerical simulations performed on three large-scale realistic power systems (TVA, ERCOT, and PJM) demonstrate that CTS can significantly reduce post-contingency violations. Parallel computing can further reduce the solution time.
RT SCED is to eliminate the actual overloads and potential post-contingency overloads identified by RTCA. Procedure-A, which is consistent with existing industry practices, is proposed to connect RTCA and RT SCED. As CTS can reduce post-contingency violations, higher branch limits, referred to as pseudo limits, may be available for some contingency-case network constraints. Thus, Procedure-B is proposed to take advantage of the reliability benefits provided by CTS. With the proposed Procedure-B, CTS can be modeled in RT SCED implicitly through the proposed pseudo limits for contingency-case network constraints, which requires no change to existing RT SCED tools. Numerical simulations demonstrate that the proposed Procedure-A can effectively eliminate the flow violations reported by RTCA and that the proposed Procedure-B can reduce most of the congestion cost with consideration of CTS.
The system status may be inaccurately estimated due to false data injection (FDI) cyber-attacks, which may mislead operators to adjust the system improperly and cause network violations. Thus, a two-stage FDI detection (FDID) approach, along with several metrics and an alert system, is proposed in this dissertation to detect FDI attacks. The first stage is to determine whether the system is under attack and the second stage would identify the target branch. Numerical simulations demonstrate the effectiveness of the proposed two-stage FDID approach.
Details
Title
- Reliability Enhancements for Real-Time Operations of Electric Power Systems
Contributors
- Li, Xingpeng (Author)
- Hedman, Kory (Thesis advisor)
- Heydt, Gerald (Committee member)
- Vittal, Vijay (Committee member)
- Qin, Jiangchao (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Subjects
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Electrical Engineering 2017