Full metadata
Title
Hydrogel Nanosensors for Colorimetric Detection and Dosimetry in Proton Beam Radiotherapy
Description
Proton beam therapy (PBT) is a state-of-the-art radiotherapy treatment approach that uses focused proton beams for tumor ablation. A key advantage of this approach over conventional photon radiotherapy (XRT) is the unique dose deposition characteristics of protons, resulting in superior healthy tissue sparing. This results in fewer unwanted side effects and improved outcomes for patients. Current available dosimeters are intrinsic, complex and expensive; hence cannot be used to determine the dose delivered to the tumor routinely. Here, we report a hydrogel based plasmonic nanosensor for measurements of clinical doses in ranges between 2-4 GyRBE. In this nanosensor, gold ions, encapsulated in a hydrogel, are reduced to gold nanoparticles following irradiation with proton beams. Formation of gold nanoparticles renders a color change to the originally colorless hydrogel. The intensity of the color can be used to calibrate the hydrogel nanosensor in order to quantify different radiation doses employed during treatment. The potential of this nanosensor for clinical translation was demonstrated using an anthropomorphic phantom mimicking a clinical radiotherapy session. The simplicity of fabrication, detection range in the fractionated radiotherapy regime and ease of detection with translational potential makes this a first-in-kind plasmonic colorimetric nanosensor for applications in clinical proton beam therapy.
Date Created
2017
Contributors
- Inamdar, Sahil (Author)
- Rege, Kaushal (Thesis advisor)
- Anand, Aman (Committee member)
- Nannenga, Brent (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
49 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.46302
Level of coding
minimal
Note
Masters Thesis Chemical Engineering 2017
System Created
- 2018-02-01 07:09:21
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats