Full metadata
Title
An Inductor Emulator Approach to Peak Current-mode Control in a 4-Phase Buck Regulator
Description
High-efficiency DC-DC converters make up one of the important blocks of state-of-the-art power supplies. The trend toward high level of transistor integration has caused load current demands to grow significantly. Supplying high output current and minimizing output current ripple has been a driving force behind the evolution of Multi-phase topologies. Ability to supply large output current with improved efficiency, reduction in the size of filter components, improved transient response make multi-phase topologies a preferred choice for low voltage-high current applications.
Current sensing capability inside a system is much sought after for applications which include Peak-current mode control, Current limiting, Overload protection. Current sensing is extremely important for current sharing in Multi-phase topologies. Existing approaches such as Series resistor, SenseFET, inductor DCR based current sensing are simple but their drawbacks such low efficiency, low accuracy, limited bandwidth demand a novel current sensing scheme.
This research presents a systematic design procedure of a 5V - 1.8V, 8A 4-Phase Buck regulator with a novel current sensing scheme based on replication of the inductor current. The proposed solution consists of detailed system modeling in PLECS which includes modification of the peak current mode model to accommodate the new current sensing element, derivation of power-stage and Plant transfer functions, Controller design. The proposed model has been verified through PLECS simulations and compared with a transistor-level implementation of the system. The time-domain parameters such as overshoot and settling-time simulated through transistor-level
implementation is in close agreement with the results obtained from the PLECS model.
Current sensing capability inside a system is much sought after for applications which include Peak-current mode control, Current limiting, Overload protection. Current sensing is extremely important for current sharing in Multi-phase topologies. Existing approaches such as Series resistor, SenseFET, inductor DCR based current sensing are simple but their drawbacks such low efficiency, low accuracy, limited bandwidth demand a novel current sensing scheme.
This research presents a systematic design procedure of a 5V - 1.8V, 8A 4-Phase Buck regulator with a novel current sensing scheme based on replication of the inductor current. The proposed solution consists of detailed system modeling in PLECS which includes modification of the peak current mode model to accommodate the new current sensing element, derivation of power-stage and Plant transfer functions, Controller design. The proposed model has been verified through PLECS simulations and compared with a transistor-level implementation of the system. The time-domain parameters such as overshoot and settling-time simulated through transistor-level
implementation is in close agreement with the results obtained from the PLECS model.
Date Created
2017
Contributors
- Burli, Venkatesh (Author)
- Bakkaloglu, Bertan (Thesis advisor)
- Garrity, Douglas (Committee member)
- Kitchen, Jennifer (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
79 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.46244
Level of coding
minimal
Note
Masters Thesis Electrical Engineering 2017
System Created
- 2018-02-01 07:04:06
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats