Description
Banded iron formations (BIFs) are among the earliest possible indicators for oxidation of the Archean biosphere. However, the origin of BIFs remains debated. Proposed formation mechanisms include oxidation of Fe(II) by O2 (Cloud, 1973), photoferrotrophy (Konhauser et al., 2002), and abiotic UV photooxidation (Braterman et al., 1983; Konhauser et al., 2007). Resolving this debate could help determine whether BIFs are really indicators of O2, biological activity, or neither.
To examine the viability of abiotic UV photooxidation of Fe, laboratory experiments were conducted in which Fe-bearing solutions were irradiated with different regions of the ultraviolet (UV) spectrum and Fe oxidation and precipitation were measured. The goal was to revisit previous experiments that obtained conflicting results, and extend these experiments by using a realistic bicarbonate buffered solution and a xenon (Xe) lamp to better match the solar spectrum and light intensity.
In experiments reexamining previous work, Fe photooxidation and precipitation was observed. Using a series of wavelength cut-off filters, the reaction was determined not to be caused by light > 345 nm. Experiments using a bicarbonate buffered solution, simulating natural waters, and using unbuffered solutions, as in prior work showed the same wavelength sensitivity. In an experiment with a Xe lamp and realistic concentrations of Archean [Fe(II)], Fe precipitation was observed in hours, demonstrating the ability for photooxidation to occur significantly in a simulated natural setting.
These results lead to modeled Fe photooxidation rates of 25 mg Fe cm-2 yr-1—near the low end of published BIF deposition rates, which range from 9 mg Fe cm-2 yr-1 to as high as 254 mg Fe cm-2 yr-1 (Konhauser et al., 2002; Trendall and Blockley, 1970). Because the rates are on the edge and the model has unquantified, favorable assumptions, these results suggest that photooxidation could contribute to, but might not be completely responsible for, large rapidly deposited BIFs such those in the Hamersley Basin. Further work is needed to improve the model and test photooxidation with other solution components. Though possibly unable to fully explain BIFs, UV light has significant oxidizing power, so the importance of photooxidation in the Archean as an environmental process and its impact on paleoredox proxies need to be determined.
To examine the viability of abiotic UV photooxidation of Fe, laboratory experiments were conducted in which Fe-bearing solutions were irradiated with different regions of the ultraviolet (UV) spectrum and Fe oxidation and precipitation were measured. The goal was to revisit previous experiments that obtained conflicting results, and extend these experiments by using a realistic bicarbonate buffered solution and a xenon (Xe) lamp to better match the solar spectrum and light intensity.
In experiments reexamining previous work, Fe photooxidation and precipitation was observed. Using a series of wavelength cut-off filters, the reaction was determined not to be caused by light > 345 nm. Experiments using a bicarbonate buffered solution, simulating natural waters, and using unbuffered solutions, as in prior work showed the same wavelength sensitivity. In an experiment with a Xe lamp and realistic concentrations of Archean [Fe(II)], Fe precipitation was observed in hours, demonstrating the ability for photooxidation to occur significantly in a simulated natural setting.
These results lead to modeled Fe photooxidation rates of 25 mg Fe cm-2 yr-1—near the low end of published BIF deposition rates, which range from 9 mg Fe cm-2 yr-1 to as high as 254 mg Fe cm-2 yr-1 (Konhauser et al., 2002; Trendall and Blockley, 1970). Because the rates are on the edge and the model has unquantified, favorable assumptions, these results suggest that photooxidation could contribute to, but might not be completely responsible for, large rapidly deposited BIFs such those in the Hamersley Basin. Further work is needed to improve the model and test photooxidation with other solution components. Though possibly unable to fully explain BIFs, UV light has significant oxidizing power, so the importance of photooxidation in the Archean as an environmental process and its impact on paleoredox proxies need to be determined.
Details
Title
- The Possible Photochemical Origins of Banded Iron Formations
Contributors
- Castleberry, Parker (Author)
- Anbar, Ariel D (Thesis advisor)
- Herckes, Pierre (Committee member)
- Lyons, James (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Subjects
Resource Type
Collections this item is in
Note
- Masters Thesis Biochemistry 2017