Description
ABSTRACT
Famine is the result of a complex set of environmental and social factors. Climate conditions are established as environmental factors contributing to famine occurrence, often through teleconnective patterns. This dissertation is designed to investigate the combined influence on world famine patterns of teleconnections, specifically the North Atlantic Oscillation (NAO), Southern Oscillation (SO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), or regional climate variations such as the South Asian Summer Monsoon (SASM). The investigation is three regional case studies of famine patterns specifically, Egypt, the British Isles, and India.
The first study (published in Holocene) employs the results of a Principal Component Analysis (PCA) yielding a SO-NAO eigenvector to predict major Egyptian famines between AD 1049-1921. The SO-NAO eigenvector (1) successfully discriminates between the 5-10 years preceding a famine and the other years, (2) predicts eight of ten major famines, and (3) correctly identifies fifty out of eighty events (63%) of food availability decline leading up to major famines.
The second study investigates the impact of the NAO, PDO, SO, and AMO on 63 British Isle famines between AD 1049 and 1914 attributed to climate causes in historical texts. Stepwise Regression Analysis demonstrates that the 5-year lagged NAO is the primary teleconnective influence on famine patterns; it successfully discriminates 73.8% of weather-related famines in the British Isles from 1049 to 1914.
The final study identifies the aggregated influence of the NAO, SO, PDO, and SASM on 70 Indian famines from AD 1049 to 1955. PCA results in a NAO-SOI vector and SASM vector that predicts famine conditions with a positive NAO and negative SO, distinct from the secondary SASM influence. The NAO-famine relationship is consistently the strongest; 181 of 220 (82%) of all famines occurred during positive NAO years.
Ultimately, the causes of famine are complex and involve many factors including societal and climatic. This dissertation demonstrates that climate teleconnections impact famine patterns and often the aggregates of multiple climate variables hold the most significant climatic impact. These results will increase the understanding of famine patterns and will help to better allocate resources to alleviate future famines.
Famine is the result of a complex set of environmental and social factors. Climate conditions are established as environmental factors contributing to famine occurrence, often through teleconnective patterns. This dissertation is designed to investigate the combined influence on world famine patterns of teleconnections, specifically the North Atlantic Oscillation (NAO), Southern Oscillation (SO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), or regional climate variations such as the South Asian Summer Monsoon (SASM). The investigation is three regional case studies of famine patterns specifically, Egypt, the British Isles, and India.
The first study (published in Holocene) employs the results of a Principal Component Analysis (PCA) yielding a SO-NAO eigenvector to predict major Egyptian famines between AD 1049-1921. The SO-NAO eigenvector (1) successfully discriminates between the 5-10 years preceding a famine and the other years, (2) predicts eight of ten major famines, and (3) correctly identifies fifty out of eighty events (63%) of food availability decline leading up to major famines.
The second study investigates the impact of the NAO, PDO, SO, and AMO on 63 British Isle famines between AD 1049 and 1914 attributed to climate causes in historical texts. Stepwise Regression Analysis demonstrates that the 5-year lagged NAO is the primary teleconnective influence on famine patterns; it successfully discriminates 73.8% of weather-related famines in the British Isles from 1049 to 1914.
The final study identifies the aggregated influence of the NAO, SO, PDO, and SASM on 70 Indian famines from AD 1049 to 1955. PCA results in a NAO-SOI vector and SASM vector that predicts famine conditions with a positive NAO and negative SO, distinct from the secondary SASM influence. The NAO-famine relationship is consistently the strongest; 181 of 220 (82%) of all famines occurred during positive NAO years.
Ultimately, the causes of famine are complex and involve many factors including societal and climatic. This dissertation demonstrates that climate teleconnections impact famine patterns and often the aggregates of multiple climate variables hold the most significant climatic impact. These results will increase the understanding of famine patterns and will help to better allocate resources to alleviate future famines.
Details
Title
- Regional famine patterns of the last millennium as influenced by aggregated climate teleconnections
Contributors
- Santoro, Michael Melton (Author)
- Cerveny, Randall S. (Thesis advisor)
- McHugh, Kevin (Committee member)
- Brazel, Anthony (Committee member)
- Balling Jr., Robert C. (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Subjects
Resource Type
Collections this item is in
Note
- Vita
- thesisPartial requirement for: Ph.D., Arizona State University, 2017
- bibliographyIncludes bibliographical references (pages 110-122)
- Field of study: Geography
Citation and reuse
Statement of Responsibility
by Michael Melton Santoro