Description
This thesis presents a power harvesting system combining energy from sub-cells of
multi-junction photovoltaic (MJ-PV) cells. A dual-input, inductor time-sharing boost
converter in continuous conduction mode (CCM) is proposed. A hysteresis inductor current
regulation in designed to reduce cross regulation caused by inductor-sharing in CCM. A
modified hill-climbing algorithm is implemented to achieve maximum power point
tracking (MPPT). A dual-path architecture is implemented to provide a regulated 1.8V
output. A proposed lossless current sensor monitors transient inductor current and a time-based power monitor is proposed to monitor PV power. The PV input provides power of
65mW. Measured results show that the peak efficiency achieved is around 85%. The
power switches and control circuits are implemented in standard 0.18um CMOS process.
multi-junction photovoltaic (MJ-PV) cells. A dual-input, inductor time-sharing boost
converter in continuous conduction mode (CCM) is proposed. A hysteresis inductor current
regulation in designed to reduce cross regulation caused by inductor-sharing in CCM. A
modified hill-climbing algorithm is implemented to achieve maximum power point
tracking (MPPT). A dual-path architecture is implemented to provide a regulated 1.8V
output. A proposed lossless current sensor monitors transient inductor current and a time-based power monitor is proposed to monitor PV power. The PV input provides power of
65mW. Measured results show that the peak efficiency achieved is around 85%. The
power switches and control circuits are implemented in standard 0.18um CMOS process.
Download count: 3
Details
Title
- Single-inductor, dual-input CCM boost converter for multi-junction PV energy harvesting
Contributors
- Peng, Qirong (Author)
- Kiaei, Sayfe (Thesis advisor)
- Bakkaloglu, Bertan (Committee member)
- Ogras, Umit Y. (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: M.S., Arizona State University, 2017
-
bibliographyIncludes bibliographical references (pages 42-43)
-
Field of study: Engineering
Citation and reuse
Statement of Responsibility
by Qirong Peng