Full metadata
Title
Software Defined Applications in Cellular and Optical Networks
Description
Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.
Date Created
2017
Contributors
- Thyagaturu, Akhilesh Thyagaturu (Author)
- Reisslein, Martin (Thesis advisor)
- Seeling, Patrick (Committee member)
- Zhang, Yanchao (Committee member)
- Tepedelenlioğlu, Cihan (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
294 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.44432
Level of coding
minimal
Note
Doctoral Dissertation Electrical Engineering 2017
System Created
- 2017-06-07 05:47:45
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats