Description
The project aims at utilization of hydrothermal liquefaction (HTL) byproducts like biochar to grow microalgae. HTL is a promising method to convert wet algal biomasses into biofuels. The initial microalgae liquefaction at a temperature of 300 °C for 30 minute, converted 31.22 % of the Galdieria sulphuraria and 41.00 % of the Kirchneriella cornutum into biocrude. Upon changing the reactor from a 100 ml to a 250 ml reactor, the yield in biocrude increased to 31.48 % for G. sulphuraria and dropped to 38.05 % for K. cornutum. Further, energy recoveries based on calorific values of HTL products were seen to drop by about 5 % of the 100 ml calculated values in the larger reactor.
Biochar from HTL of G. sulphuraria at 300 °C showed 15.98 and 5.27 % of phosphorous and nitrogen, respectively. HTL products from the biomass were analyzed for major elements through ICP-OES and CHNS/O. N and P are macronutrients that can be utilized in growing microalgae. This could reduce the operational demands in growing algae like, phosphorous mined to meet annual national demand for aviation fuel. Acidic leaching of these elements as phosphates and ammoniacal nitrogen was studied. Improved leaching of 49.49 % phosphorous and 95.71 % nitrogen was observed at 40 °C and pH 2.5 over a period of 7 days into the growth media. These conditions being ideal for growth of G. sulphuraria, leaching can be done in-situ to reduce overhead cost.
Growth potential of G. sulphuraria in leached media was compared to a standard cyanidium media produced from inorganic chemicals. Initial inhibition studies were done in the leached media at 40 °C and 2-3 vol. % CO2 to observe a positive growth rate of 0.273 g L-1 day-1. Further, growth was compared to standard media with similar composition in a 96 well plate 50 μL microplate assay for 5 days. The growth rates in both media were comparable. Additionally, growth was confirmed in a 240 times larger tubular reactor in a Tissue Culture Roller drum apparatus. A better growth was observed in the leached cyanidium media as compared to the standard variant.
Biochar from HTL of G. sulphuraria at 300 °C showed 15.98 and 5.27 % of phosphorous and nitrogen, respectively. HTL products from the biomass were analyzed for major elements through ICP-OES and CHNS/O. N and P are macronutrients that can be utilized in growing microalgae. This could reduce the operational demands in growing algae like, phosphorous mined to meet annual national demand for aviation fuel. Acidic leaching of these elements as phosphates and ammoniacal nitrogen was studied. Improved leaching of 49.49 % phosphorous and 95.71 % nitrogen was observed at 40 °C and pH 2.5 over a period of 7 days into the growth media. These conditions being ideal for growth of G. sulphuraria, leaching can be done in-situ to reduce overhead cost.
Growth potential of G. sulphuraria in leached media was compared to a standard cyanidium media produced from inorganic chemicals. Initial inhibition studies were done in the leached media at 40 °C and 2-3 vol. % CO2 to observe a positive growth rate of 0.273 g L-1 day-1. Further, growth was compared to standard media with similar composition in a 96 well plate 50 μL microplate assay for 5 days. The growth rates in both media were comparable. Additionally, growth was confirmed in a 240 times larger tubular reactor in a Tissue Culture Roller drum apparatus. A better growth was observed in the leached cyanidium media as compared to the standard variant.
Details
Title
- Optimum co-product utilization from hydrothermal liquefaction of microalgae
Contributors
- Mathew, Melvin (Author)
- Deng, Shuguang (Thesis advisor)
- Lammers, Peter J. (Committee member)
- Nielsen, David R (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2017
- bibliographyIncludes bibliographical references (pages 89-100)
- Field of study: Chemical engineering
Citation and reuse
Statement of Responsibility
by Melvin Mathew