Description
This work describes the development of a device for measuring CO2 in breath, which has applications in monitoring a variety of health issues, such as Chronic Obstructive Pulmonary Disease (COPD), asthma, and cardiovascular disease. The device takes advantage of colorimetric sensing technology in order to maintain a low cost and high user-friendliness. The sensor consists of a pH dye, reactive element, and base coated on a highly porous Teflon membrane. The transmittance of the sensor is measured in the device via a simple LED/photodiode system, along with the flow rate, ambient relative humidity, and barometric pressure. The flow is measured by a newly developed flow meter described in this work, the Confined Pitot Tube (CPT) flow meter, which provides a high accuracy with reduced flow-resistance with a standard differential pressure transducer. I demonstrate in this work that the system has a high sensitivity, high specificity, fast time-response, high reproducibility, and good stability. The sensor has a simple calibration method which requires no action by the user, and utilizes a sophisticated, yet lightweight, model in order to predict temperature changes on the sensor during breathing and track changes in water content. It is shown to be effective for measuring CO2 waveform parameters on a breath-by-breath basis, such as End-Tidal CO2, Alveolar Plateau Slope, and Beginning Exhalation Slope.
Details
Title
- A Portable Colorimetric Sensing Platform for the Evaluation of Carbon Dioxide in Breath
Contributors
- Bridgeman, Devon (Author)
- Forzani, Erica S (Thesis advisor)
- Nikkhah, Mehdi (Committee member)
- Holloway, Julianne (Committee member)
- Raupp, Gregory (Committee member)
- Emady, Heather (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Subjects
Resource Type
Collections this item is in
Note
- Doctoral Dissertation Chemical Engineering 2017