Description
The process of combining data is one in which information from disjoint datasets sharing at least a number of common variables is merged. This process is commonly referred to as data fusion, with the main objective of creating a new dataset permitting more flexible analyses than the separate analysis of each individual dataset. Many data fusion methods have been proposed in the literature, although most utilize the frequentist framework. This dissertation investigates a new approach called Bayesian Synthesis in which information obtained from one dataset acts as priors for the next analysis. This process continues sequentially until a single posterior distribution is created using all available data. These informative augmented data-dependent priors provide an extra source of information that may aid in the accuracy of estimation. To examine the performance of the proposed Bayesian Synthesis approach, first, results of simulated data with known population values under a variety of conditions were examined. Next, these results were compared to those from the traditional maximum likelihood approach to data fusion, as well as the data fusion approach analyzed via Bayes. The assessment of parameter recovery based on the proposed Bayesian Synthesis approach was evaluated using four criteria to reflect measures of raw bias, relative bias, accuracy, and efficiency. Subsequently, empirical analyses with real data were conducted. For this purpose, the fusion of real data from five longitudinal studies of mathematics ability varying in their assessment of ability and in the timing of measurement occasions was used. Results from the Bayesian Synthesis and data fusion approaches with combined data using Bayesian and maximum likelihood estimation methods were reported. The results illustrate that Bayesian Synthesis with data driven priors is a highly effective approach, provided that the sample sizes for the fused data are large enough to provide unbiased estimates. Bayesian Synthesis provides another beneficial approach to data fusion that can effectively be used to enhance the validity of conclusions obtained from the merging of data from different studies.
Details
Title
- A Bayesian Synthesis approach to data fusion using augmented data-dependent priors
Contributors
- Marcoulides, Katerina M (Author)
- Grimm, Kevin (Thesis advisor)
- Levy, Roy (Thesis advisor)
- MacKinnon, David (Committee member)
- Suk, Hye Won (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph. D., Arizona State University, 2017
- bibliographyIncludes bibliographical references (pages 75-85)
- Field of study: Psychology
Citation and reuse
Statement of Responsibility
by Katerina M. Marcoulides