Description
Modern semiconductor technologies have been dominated by group-IV materials and III-V analogues. The development of hybrid derivatives combining appropriate members of these systems has been of interest for the purpose of extending the optoelectronic capabilities of the state-of-the-art. Early work on pseudo-binary (III-V)-IV alloys, described with the general formula (III-V)1-x(IV2)x,
showed limited progress due to phase segregation, auto-doping and compositional inhomogeneities. Recently, new techniques were introduced for synthesizing new classes of (III-V)-IV hybrid materials using reactions of V(IVH3)3 molecules [V = N, P, As and IV = Si, Ge] with group-III elements (B, Al, Ga, In). The reactions produce (III-V)-IV3 building blocks that interlink to form diamond-like
frameworks in which the III-V pairs incorporate as isolated units within the group-IV lattice. This approach not only precludes phase segregation, but also provides access to structures and compositions unattainable by conventional means. Entire new families of crystalline (III-V)-IV3 and (III-V)y(IV)5-y alloys with tunable IV-rich compositions, different from conventional (III-V)1-x(IV2)x systems, have been grown on Si(100) and GaP(100) wafers as well as Si1-xGex and Ge buffer layers which, in most cases, provide lattice matched templates for Si integration.
In this work, materials in the In-P-Ge, Ga-As-Ge and Ga-P-Si systems that would exhibit direct-gap behavior were targeted. A series of (InP)yGe5-2y alloys with tunable Ge contents above 60% were synthesized by reactions of P(GeH3)3 and indium atoms and were studied for bonding, structure, and optical response. (GaAs)yGe5-2y analogues were also grown and exhibited strong photoluminescence for applications in mid-IR photonics. The GaPSi3 alloy and Si-rich derivatives were produced via reactions of P(SiH3)3 and [H2GaNMe2]2 and exhibit enhanced absorption in the visible range. Quaternary analogues in the Al1-xBxPSi3 system were grown on Si via reactions of Al(BH4)3 and P(SiH3)3 leading to the formation crystalline materials with extended absorption relative to Si. This makes them imminently suitable for applications in Si-based photovoltaics. The work emphasized use of quantum-chemical simulations to elucidate structural, thermodynamic, and mechanical properties of the synthesized systems. The theory also included simulations of new synthetic targets such as BNC3, BNSi3, BPC3, and BPSi3 with interesting mechanical properties and strong covalent bonding.
showed limited progress due to phase segregation, auto-doping and compositional inhomogeneities. Recently, new techniques were introduced for synthesizing new classes of (III-V)-IV hybrid materials using reactions of V(IVH3)3 molecules [V = N, P, As and IV = Si, Ge] with group-III elements (B, Al, Ga, In). The reactions produce (III-V)-IV3 building blocks that interlink to form diamond-like
frameworks in which the III-V pairs incorporate as isolated units within the group-IV lattice. This approach not only precludes phase segregation, but also provides access to structures and compositions unattainable by conventional means. Entire new families of crystalline (III-V)-IV3 and (III-V)y(IV)5-y alloys with tunable IV-rich compositions, different from conventional (III-V)1-x(IV2)x systems, have been grown on Si(100) and GaP(100) wafers as well as Si1-xGex and Ge buffer layers which, in most cases, provide lattice matched templates for Si integration.
In this work, materials in the In-P-Ge, Ga-As-Ge and Ga-P-Si systems that would exhibit direct-gap behavior were targeted. A series of (InP)yGe5-2y alloys with tunable Ge contents above 60% were synthesized by reactions of P(GeH3)3 and indium atoms and were studied for bonding, structure, and optical response. (GaAs)yGe5-2y analogues were also grown and exhibited strong photoluminescence for applications in mid-IR photonics. The GaPSi3 alloy and Si-rich derivatives were produced via reactions of P(SiH3)3 and [H2GaNMe2]2 and exhibit enhanced absorption in the visible range. Quaternary analogues in the Al1-xBxPSi3 system were grown on Si via reactions of Al(BH4)3 and P(SiH3)3 leading to the formation crystalline materials with extended absorption relative to Si. This makes them imminently suitable for applications in Si-based photovoltaics. The work emphasized use of quantum-chemical simulations to elucidate structural, thermodynamic, and mechanical properties of the synthesized systems. The theory also included simulations of new synthetic targets such as BNC3, BNSi3, BPC3, and BPSi3 with interesting mechanical properties and strong covalent bonding.
Details
Title
- Synthesis of hybrid (III-V)y(IV)5-2y semiconductors: a new approach to extending the optoelectronic capabilities of Si and Ge technologies
Contributors
- Sims, Patrick Edward (Author)
- Kouvetakis, John (Thesis advisor)
- Chizmeshya, Andrew V. G. (Committee member)
- Menéndez, Jose (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2017
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2017
- bibliographyIncludes bibliographical references (pages 157-163)
- Field of study: Chemistry
Citation and reuse
Statement of Responsibility
by Patrick Edward Sims