Full metadata
Title
Holographic Metasurface Leaky Wave Antennas
Description
Articially engineered two-dimensional materials, which are widely known as
metasurfaces, are employed as ground planes in various antenna applications. Due to
their nature to exhibit desirable electromagnetic behavior, they are also used to design
waveguiding structures, absorbers, frequency selective surfaces, angular-independent
surfaces, etc. Metasurfaces usually consist of electrically small conductive planar
patches arranged in a periodic array on a dielectric covered ground plane. Holographic
Articial Impedance Surfaces (HAISs) are one such metasurfaces that are capable of
forming a pencil beam in a desired direction, when excited with surface waves. HAISs
are inhomogeneous surfaces that are designed by modulating its surface impedance.
This surface impedance modulation creates a periodical discontinuity that enables a
part of the surface waves to leak out into the free space leading to far-eld radia-
tion. The surface impedance modulation is based on the holographic principle. This
dissertation is concentrated on designing HAISs with
Desired polarization for the pencil beam
Enhanced bandwidth
Frequency scanning
Conformity to curved surfaces
HAIS designs considered in this work include both one and two dimensional mod-
ulations. All the designs and analyses are supported by mathematical models and
HFSS simulations.
metasurfaces, are employed as ground planes in various antenna applications. Due to
their nature to exhibit desirable electromagnetic behavior, they are also used to design
waveguiding structures, absorbers, frequency selective surfaces, angular-independent
surfaces, etc. Metasurfaces usually consist of electrically small conductive planar
patches arranged in a periodic array on a dielectric covered ground plane. Holographic
Articial Impedance Surfaces (HAISs) are one such metasurfaces that are capable of
forming a pencil beam in a desired direction, when excited with surface waves. HAISs
are inhomogeneous surfaces that are designed by modulating its surface impedance.
This surface impedance modulation creates a periodical discontinuity that enables a
part of the surface waves to leak out into the free space leading to far-eld radia-
tion. The surface impedance modulation is based on the holographic principle. This
dissertation is concentrated on designing HAISs with
Desired polarization for the pencil beam
Enhanced bandwidth
Frequency scanning
Conformity to curved surfaces
HAIS designs considered in this work include both one and two dimensional mod-
ulations. All the designs and analyses are supported by mathematical models and
HFSS simulations.
Date Created
2017
Contributors
- Pandi, Sivaseetharaman (Author)
- Balanis, Constantine A (Thesis advisor)
- Palais, Joseph (Committee member)
- Aberle, James T., 1961- (Committee member)
- Trichopoulos, Georgios (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
91 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.42048
Level of coding
minimal
Note
Doctoral Dissertation Electrical Engineering 2017
System Created
- 2017-04-01 08:00:56
System Modified
- 2021-08-30 01:19:47
- 3 years 2 months ago
Additional Formats