Description
The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a rapidly developing infectious disease outbreak, complex mechanistic models may be too difficult to be calibrated quick enough for policy makers to make informed decisions. Simple phenomenological models that rely on a small number of parameters can provide an initial platform for assessing the epidemic trajectory, estimating the reproduction number and quantifying the disease burden from the early epidemic phase.
Chapter 1 provides background information and motivation for infectious disease forecasting and outlines the rest of the thesis.
In chapter 2, logistic patch models are used to assess and forecast the 2013-2015 West Africa Zaire ebolavirus epidemic. In particular, this chapter is concerned with comparing and contrasting the effects that spatial heterogeneity has on the forecasting performance of the cumulative infected case counts reported during the epidemic.
In chapter 3, two simple phenomenological models inspired from population biology are used to assess the Research and Policy for Infectious Disease Dynamics (RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious disease scenarios. Because of the nature of the synthetically generated data, model predictions are compared to exact epidemiological quantities used in the simulation.
In chapter 4, these models are applied to the 1904 Plague epidemic that occurred in Bombay. This chapter provides evidence that these simple models may be applicable to infectious diseases no matter the disease transmission mechanism.
Chapter 5, uses the patch models from chapter 2 to explore how migration in the 1904 Plague epidemic changes the final epidemic size.
The final chapter is an interdisciplinary project concerning within-host dynamics of cereal yellow dwarf virus-RPV, a plant pathogen from a virus group that infects over 150 grass species. Motivated by environmental nutrient enrichment due to anthropological activities, mathematical models are employed to investigate the relevance of resource competition to pathogen and host dynamics.
Chapter 1 provides background information and motivation for infectious disease forecasting and outlines the rest of the thesis.
In chapter 2, logistic patch models are used to assess and forecast the 2013-2015 West Africa Zaire ebolavirus epidemic. In particular, this chapter is concerned with comparing and contrasting the effects that spatial heterogeneity has on the forecasting performance of the cumulative infected case counts reported during the epidemic.
In chapter 3, two simple phenomenological models inspired from population biology are used to assess the Research and Policy for Infectious Disease Dynamics (RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious disease scenarios. Because of the nature of the synthetically generated data, model predictions are compared to exact epidemiological quantities used in the simulation.
In chapter 4, these models are applied to the 1904 Plague epidemic that occurred in Bombay. This chapter provides evidence that these simple models may be applicable to infectious diseases no matter the disease transmission mechanism.
Chapter 5, uses the patch models from chapter 2 to explore how migration in the 1904 Plague epidemic changes the final epidemic size.
The final chapter is an interdisciplinary project concerning within-host dynamics of cereal yellow dwarf virus-RPV, a plant pathogen from a virus group that infects over 150 grass species. Motivated by environmental nutrient enrichment due to anthropological activities, mathematical models are employed to investigate the relevance of resource competition to pathogen and host dynamics.
Download count: 3
Details
Title
- Dynamics and implications of data-based disease models in public health and agriculture
Contributors
- Pell, Bruce (Author)
- Kuang, Yang (Thesis advisor)
- Chowell-Puente, Gerardo (Committee member)
- Nagy, John (Committee member)
- Kostelich, Eric (Committee member)
- Gardner, Carl (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Subjects
Resource Type
Collections this item is in
Note
-
thesisPartial requirement for: Ph.D., Arizona State University, 2016
-
bibliographyIncludes bibliographical references (pages 104-113)
-
Field of study: Applied mathematics
Citation and reuse
Statement of Responsibility
by Bruce Pell