155107-Thumbnail Image.png
Description
State of art modern System-On-Chip architectures often require very low noise supplies without overhead on high efficiencies. Low noise supplies are especially important in noise sensitive analog blocks such as high precision Analog-to-Digital Converters, Phase Locked Loops etc., and analog

State of art modern System-On-Chip architectures often require very low noise supplies without overhead on high efficiencies. Low noise supplies are especially important in noise sensitive analog blocks such as high precision Analog-to-Digital Converters, Phase Locked Loops etc., and analog signal processing blocks. Switching regulators, while providing high efficiency power conversion suffer from inherent ripple on their output. A typical solution for high efficiency low noise supply is to cascade switching regulators with Low Dropout linear regulators (LDO) which generate inherently quiet supplies. The switching frequencies of switching regulators keep scaling to higher values in order to reduce the sizes of the passive inductor and capacitors at the output of switching regulators. This poses a challenge for existing solutions of switching regulators followed by LDO since the Power Supply Rejection (PSR) of LDOs are band-limited. In order to achieve high PSR over a wideband, the penalty would be to increase the quiescent power consumed to increase the bandwidth of the LDO and increase in solution area of the LDO. Hence, an alternative to the existing approach is required which improves the ripple cancellation at the output of switching regulator while overcoming the deficiencies of the LDO.

This research focuses on developing an innovative technique to cancel the ripple at the output of switching regulator which is scalable across a wide range of switching frequencies. The proposed technique consists of a primary ripple canceller and an auxiliary ripple canceller, both of which facilitate in the generation of a quiet supply and help to attenuate the ripple at the output of buck converter by over 22dB. These techniques can be applied to any DC-DC converter and are scalable across frequency, load current, output voltage as compared to LDO without significant overhead on efficiency or area. The proposed technique also presents a fully integrated solution without the need of additional off-chip components which, considering the push for full-integration of Power Management Integrated Circuits, is a big advantage over using LDOs.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Mixed-mode adaptive ripple canceller for switching regulators
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (page 43)
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Kishan Joshi

    Machine-readable links