Full metadata
Title
Experimental procedures and data analysis of orthotropic composites
Description
Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a variety of loads including impact loads. These FE models rely on an array of measured material properties as input for accuracy. This work focuses on an orthotropic plasticity constitutive model that has three components – deformation, damage and failure. The model relies on the material properties of the composite such as Young’s modulus, Poisson’s ratio, stress-strain curves in the principal and off-axis material directions, etc. This thesis focuses on two areas important to the development of the FE model – tabbing of the test specimens and data processing of the tests used to generate the required stress-strain curves. A comparative study has been performed on three candidate adhesives using double lap-shear testing to determine their effectiveness in composite specimen tabbing. These tests determined the 3M DP460 epoxy performs best in shear. The Loctite Superglue with 80% the ultimate stress of the 3M DP460 epoxy is acceptable when test specimens have to be ready for testing within a few hours. JB KwikWeld is not suitable for tabbing. In addition, the Experimental Data Processing (EDP) program has been improved for use in post-processing raw data from composites test. EDP has improved to allow for complete processing with the implementation of new weighted least squares smoothing options, curve averaging techniques, and new functionality for data manipulation.
Date Created
2016
Contributors
- Schmidt, Nathan William (Author)
- Rajan, Subramaniam D. (Thesis advisor)
- Neithalath, Narayanan (Committee member)
- Mobasher, Barzin (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xi, 107 pages : illsutrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.40724
Statement of Responsibility
by Nathan William Schmidt
Description Source
Viewed on January 3, 2017
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 85-86)
Field of study: Civil engineering
System Created
- 2016-12-01 07:01:33
System Modified
- 2021-08-30 01:20:48
- 3 years 2 months ago
Additional Formats