155036-Thumbnail Image.png
Description
For a sensor array, part of its elements may fail to work due to hardware failures. Then the missing data may distort in the beam pattern or decrease the accuracy of direction-of-arrival (DOA) estimation. Therefore, considerable research has been conducted

For a sensor array, part of its elements may fail to work due to hardware failures. Then the missing data may distort in the beam pattern or decrease the accuracy of direction-of-arrival (DOA) estimation. Therefore, considerable research has been conducted to develop algorithms that can estimate the missing signal information. On the other hand, through those algorithms, array elements can also be selectively turned off while the missed information can be successfully recovered, which will save power consumption and hardware cost.

Conventional approaches focusing on array element failures are mainly based on interpolation or sequential learning algorithm. Both of them rely heavily on some prior knowledge such as the information of the failures or a training dataset without missing data. In addition, since most of the existing approaches are developed for DOA estimation, their recovery target is usually the co-variance matrix but not the signal matrix.

In this thesis, a new signal recovery method based on matrix completion (MC) theory is introduced. It aims to directly refill the absent entries in the signal matrix without any prior knowledge. We proposed a novel overlapping reshaping method to satisfy the applying conditions of MC algorithms. Compared to other existing MC based approaches, our proposed method can provide us higher probability of successful recovery. The thesis describes the principle of the algorithms and analyzes the performance of this method. A few application examples with simulation results are also provided.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • The design of a matrix completion signal recovery method for array processing
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 65-71)
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Jie Fan

    Machine-readable links