Full metadata
Title
Modeling and control of a longitudinal platoon of ground robotic vehicles
Description
Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several critical modeling, design and control objectives for ground vehicles. One central objective is formation of multi-robot systems, particularly, longitudinal control of platoon of ground vehicle. In this thesis, the author use low-cost ground robot platform shows that with leader information, the platoon controller can have better performance than one without it.
Based on measurement from multiple vehicles, motor-wheel system dynamic model considering gearbox transmission has been developed. Noticing the difference between on ground vehicle behavior and off-ground vehicle behavior, on ground vehicle-motor model considering friction and battery internal resistance has been put forward and experimentally validated by multiple same type of vehicles. Then simplified longitudinal platoon model based on on-ground test were used as basis for platoon controller design.
Hardware and software has been updated to facilitate the goal of control a platoon of ground vehicles. Based on previous work of Lin on low-cost differential-drive
(DD) RC vehicles called Thunder Tumbler, new robot platform named Enhanced
Thunder Tumbler (ETT 2) has been developed with following improvement: (1) optical wheel-encoder which has 2.5 times higher resolution than magnetic based one,
(2) BNO055 IMU can read out orientation directly that LSM9DS0 IMU could not,
(3) TL-WN722N Wifi USB Adapter with external antenna which can support more stable communication compared to Edimax adapter, (4) duplex serial communication between Pi and Arduino than single direction communication from Pi to Arduino, (5) inter-vehicle communication based on UDP protocol.
All demonstrations presented using ETT vehicles. The following summarizes key hardware demonstrations: (1) cruise-control along line, (2) longitudinal platoon control based on local information (ultrasonic sensor) without inter-vehicle communication, (3) longitudinal platoon control based on local information (ultrasonic sensor) and leader information (speed). Hardware data/video is compared with, and corroborated by, model-based simulations. Platoon simulation and hardware data reveals that with necessary information from platoon leader, the control effort will be reduced and space deviation be diminished among propagation along the fleet of vehicles. In short, many capabilities that are critical for reaching the longer-term FAME goal are demonstrated.
Based on measurement from multiple vehicles, motor-wheel system dynamic model considering gearbox transmission has been developed. Noticing the difference between on ground vehicle behavior and off-ground vehicle behavior, on ground vehicle-motor model considering friction and battery internal resistance has been put forward and experimentally validated by multiple same type of vehicles. Then simplified longitudinal platoon model based on on-ground test were used as basis for platoon controller design.
Hardware and software has been updated to facilitate the goal of control a platoon of ground vehicles. Based on previous work of Lin on low-cost differential-drive
(DD) RC vehicles called Thunder Tumbler, new robot platform named Enhanced
Thunder Tumbler (ETT 2) has been developed with following improvement: (1) optical wheel-encoder which has 2.5 times higher resolution than magnetic based one,
(2) BNO055 IMU can read out orientation directly that LSM9DS0 IMU could not,
(3) TL-WN722N Wifi USB Adapter with external antenna which can support more stable communication compared to Edimax adapter, (4) duplex serial communication between Pi and Arduino than single direction communication from Pi to Arduino, (5) inter-vehicle communication based on UDP protocol.
All demonstrations presented using ETT vehicles. The following summarizes key hardware demonstrations: (1) cruise-control along line, (2) longitudinal platoon control based on local information (ultrasonic sensor) without inter-vehicle communication, (3) longitudinal platoon control based on local information (ultrasonic sensor) and leader information (speed). Hardware data/video is compared with, and corroborated by, model-based simulations. Platoon simulation and hardware data reveals that with necessary information from platoon leader, the control effort will be reduced and space deviation be diminished among propagation along the fleet of vehicles. In short, many capabilities that are critical for reaching the longer-term FAME goal are demonstrated.
Date Created
2016
Contributors
- Li, Zhichao (Author)
- Rodriguez, Armando A (Thesis advisor)
- Artemiadis, Panagiotis K (Committee member)
- Berman, Spring M (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xviii, 311 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.40362
Statement of Responsibility
by Zhichao Li
Description Source
Viewed on December 14, 2016
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 185-189)
Field of study: Electrical engineering
System Created
- 2016-10-12 02:23:26
System Modified
- 2021-08-30 01:20:59
- 3 years 2 months ago
Additional Formats