Full metadata
Title
Subcycle fatigue crack growth formulation for constant and variable amplitude loading
Description
A previously developed small time scale fatigue crack growth model is improved, modified and extended with an emphasis on creating the simplest models that maintain the desired level of accuracy for a variety of materials. The model provides a means of estimating load sequence effects by continuously updating the crack opening stress every cycle, in a simplified manner. One of the significant phenomena of the crack opening stress under negative stress ratio is the residual tensile stress induced by the applied compressive stress. A modified coefficient is introduced to determine the extent to which residual stress impact the crack closure and is observed to vary for different materials. Several other literature models for crack closure under constant loading are also reviewed and compared with the proposed model. The modified model is then shown to predict several sets of published test results under constant loading for a variety of materials.
The crack opening stress is formalized as a function of the plastic zone sizes at the crack tip and the current crack length, which provided a means of approximation, accounting for both acceleration and retardation effects in a simplified manner. A sensitivity parameter is introduced to modify the enlarged plastic zone due to overload, to better fit the delay cycles with the test data and is observed to vary for different materials. Furthermore, the interaction effect induced by the combination of overload and underload sequence is modeled by depleting the compressive plastic zone due to an overload with the tensile plastic zone due to an underload. A qualitative analysis showed the simulation capacity of the small time scale model under different load types. A good agreement between prediction and test data for several irregular load types proved the applicability of the small time scale model under variable amplitude loading.
The crack opening stress is formalized as a function of the plastic zone sizes at the crack tip and the current crack length, which provided a means of approximation, accounting for both acceleration and retardation effects in a simplified manner. A sensitivity parameter is introduced to modify the enlarged plastic zone due to overload, to better fit the delay cycles with the test data and is observed to vary for different materials. Furthermore, the interaction effect induced by the combination of overload and underload sequence is modeled by depleting the compressive plastic zone due to an overload with the tensile plastic zone due to an underload. A qualitative analysis showed the simulation capacity of the small time scale model under different load types. A good agreement between prediction and test data for several irregular load types proved the applicability of the small time scale model under variable amplitude loading.
Date Created
2016
Contributors
- Venkatesan, Karthik Rajan (Author)
- Liu, Yongming (Thesis advisor)
- Oswald, Jay (Committee member)
- Jiang, Hanqing (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
viii, 63 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.40326
Statement of Responsibility
by Karthik Rajan Venkatesan
Description Source
Viewed on December 5, 2016
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 60-63)
Field of study: Mechanical engineering
System Created
- 2016-10-12 02:21:25
System Modified
- 2021-08-30 01:21:11
- 3 years 2 months ago
Additional Formats