Description
Optoelectronic and microelectronic applications of germanium-based materials have received considerable research interest in recent years. A novel method for Ge on Si heteroepitaxy required for such applications was developed via molecular epitaxy of Ge5H12. Next, As(GeH3)3, As(SiH3)3, SbD3, S(GeH3)2 and S(SiH3)2 molecular sources were utilized in degenerate n-type doping of Ge. The epitaxial Ge films produced in this work incorporate donor atoms at concentrations above the thermodynamic equilibrium limits. The donors are nearly fully activated, and led to films with lowest resistivity values thus far reported.
Band engineering of Ge was achieved by alloying with Sn. Epitaxy of the alloy layers was conducted on virtual Ge substrates, and made use of the germanium hydrides Ge2H6 and Ge3H8, and the Sn source SnD4. These films exhibit stronger emission than equivalent material deposited directly on Si, and the contributions from the direct and indirect edges can be separated. The indirect-direct crossover composition for Ge1-ySny alloys was determined by photoluminescence (PL). By n-type doping of the Ge1-ySny alloys via P(GeH3)3, P(SiH3)3 and As(SiH3)3, it was possible to enhance photoexcited emission by more than an order-of-magnitude.
The above techniques for deposition of direct gap Ge1-ySny alloys and doping of Ge were combined with p-type doping methods for Ge1-ySny using B2H6 to fabricate pin heterostructure diodes with active layer compositions up to y=0.137. These represent the first direct gap light emitting diodes made from group IV materials. The effect of the single defected n-i¬ interface in a n-Ge/i-Ge1-ySny/p-Ge1-zSnz architecture on electroluminescence (EL) was studied. This led to lattice engineering of the n-type contact layer to produce diodes of n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architecture which are devoid of interface defects and therefore exhibit more efficient EL than the previous design. Finally, n-Ge1-ySny/p-Ge1-zSnz pn junction devices were synthesized with varying composition and doping parameters to investigate the effect of these properties on EL.
Band engineering of Ge was achieved by alloying with Sn. Epitaxy of the alloy layers was conducted on virtual Ge substrates, and made use of the germanium hydrides Ge2H6 and Ge3H8, and the Sn source SnD4. These films exhibit stronger emission than equivalent material deposited directly on Si, and the contributions from the direct and indirect edges can be separated. The indirect-direct crossover composition for Ge1-ySny alloys was determined by photoluminescence (PL). By n-type doping of the Ge1-ySny alloys via P(GeH3)3, P(SiH3)3 and As(SiH3)3, it was possible to enhance photoexcited emission by more than an order-of-magnitude.
The above techniques for deposition of direct gap Ge1-ySny alloys and doping of Ge were combined with p-type doping methods for Ge1-ySny using B2H6 to fabricate pin heterostructure diodes with active layer compositions up to y=0.137. These represent the first direct gap light emitting diodes made from group IV materials. The effect of the single defected n-i¬ interface in a n-Ge/i-Ge1-ySny/p-Ge1-zSnz architecture on electroluminescence (EL) was studied. This led to lattice engineering of the n-type contact layer to produce diodes of n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architecture which are devoid of interface defects and therefore exhibit more efficient EL than the previous design. Finally, n-Ge1-ySny/p-Ge1-zSnz pn junction devices were synthesized with varying composition and doping parameters to investigate the effect of these properties on EL.
Details
Title
- Chemical vapor deposition of metastable germanium based semiconductors for optoelectronic applications
Contributors
- Senaratne, Charutha Lasitha (Author)
- Kouvetakis, John (Thesis advisor)
- Chizmeshya, Andrew (Committee member)
- Menéndez, Jose (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2016
- bibliographyIncludes bibliographical references (pages 206-220)
- Field of study: Chemistry
Citation and reuse
Statement of Responsibility
by Charutha Lasitha Senaratne