Full metadata
Title
Instrumentation and coverage analysis of cyber physical system models
Description
A Cyber Physical System consists of a computer monitoring and controlling physical processes usually in a feedback loop. These systems are increasingly becoming part of our daily life ranging from smart buildings to medical devices to automobiles. The controller comprises discrete software which may be operating in one of the many possible operating modes and interacting with a changing physical environment in a feedback loop. The systems with such a mix of discrete and continuous dynamics are usually termed as hybrid systems. In general, these systems are safety critical, hence their correct operation must be verified. Model Based Design (MBD) languages like Simulink are being used extensively for the design and analysis of hybrid systems due to the ease in system design and automatic code generation. It also allows testing and verification of these systems before deployment. One of the main challenges in the verification of these systems is to test all the operating modes of the control software and reduce the amount of user intervention.
This research aims to provide an automated framework for the structural analysis and instrumentation of hybrid system models developed in Simulink. The behavior of the components introducing discontinuities in the model are automatically extracted in the form of state transition graphs. The framework is integrated in the S-TaLiRo toolbox to demonstrate the improvement in mode coverage.
This research aims to provide an automated framework for the structural analysis and instrumentation of hybrid system models developed in Simulink. The behavior of the components introducing discontinuities in the model are automatically extracted in the form of state transition graphs. The framework is integrated in the S-TaLiRo toolbox to demonstrate the improvement in mode coverage.
Date Created
2016
Contributors
- Thekkalore Srinivasa, Rahul (Author)
- Fainekos, Georgios (Thesis advisor)
- Mayyas, Abdel Ra’ouf (Committee member)
- Sarjoughian, Hessam S. (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
ix, 63 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.40222
Statement of Responsibility
by Rahul Thekkalore Srinivasa
Description Source
Viewed on November 2, 2016
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 61-63)
Field of study: Computer science
System Created
- 2016-10-12 02:16:38
System Modified
- 2021-08-30 01:21:44
- 3 years 2 months ago
Additional Formats