Full metadata
Title
Patient-centered and experience-aware mining for effective information discovery in health forums
Description
Online health forums provide a convenient channel for patients, caregivers, and medical professionals to share their experience, support and encourage each other, and form health communities. The fast growing content in health forums provides a large repository for people to seek valuable information. A forum user can issue a keyword query to search health forums regarding to some specific questions, e.g., what treatments are effective for a disease symptom? A medical researcher can discover medical knowledge in a timely and large-scale fashion by automatically aggregating the latest evidences emerging in health forums.
This dissertation studies how to effectively discover information in health forums. Several challenges have been identified. First, the existing work relies on the syntactic information unit, such as a sentence, a post, or a thread, to bind different pieces of information in a forum. However, most of information discovery tasks should be based on the semantic information unit, a patient. For instance, given a keyword query that involves the relationship between a treatment and side effects, it is expected that the matched keywords refer to the same patient. In this work, patient-centered mining is proposed to mine patient semantic information units. In a patient information unit, the health information, such as diseases, symptoms, treatments, effects, and etc., is connected by the corresponding patient.
Second, the information published in health forums has varying degree of quality. Some information includes patient-reported personal health experience, while others can be hearsay. In this work, a context-aware experience extraction framework is proposed to mine patient-reported personal health experience, which can be used for evidence-based knowledge discovery or finding patients with similar experience.
At last, the proposed patient-centered and experience-aware mining framework is used to build a patient health information database for effectively discovering adverse drug reactions (ADRs) from health forums. ADRs have become a serious health problem and even a leading cause of death in the United States. Health forums provide valuable evidences in a large scale and in a timely fashion through the active participation of patients, caregivers, and doctors. Empirical evaluation shows the effectiveness of the proposed approach.
This dissertation studies how to effectively discover information in health forums. Several challenges have been identified. First, the existing work relies on the syntactic information unit, such as a sentence, a post, or a thread, to bind different pieces of information in a forum. However, most of information discovery tasks should be based on the semantic information unit, a patient. For instance, given a keyword query that involves the relationship between a treatment and side effects, it is expected that the matched keywords refer to the same patient. In this work, patient-centered mining is proposed to mine patient semantic information units. In a patient information unit, the health information, such as diseases, symptoms, treatments, effects, and etc., is connected by the corresponding patient.
Second, the information published in health forums has varying degree of quality. Some information includes patient-reported personal health experience, while others can be hearsay. In this work, a context-aware experience extraction framework is proposed to mine patient-reported personal health experience, which can be used for evidence-based knowledge discovery or finding patients with similar experience.
At last, the proposed patient-centered and experience-aware mining framework is used to build a patient health information database for effectively discovering adverse drug reactions (ADRs) from health forums. ADRs have become a serious health problem and even a leading cause of death in the United States. Health forums provide valuable evidences in a large scale and in a timely fashion through the active participation of patients, caregivers, and doctors. Empirical evaluation shows the effectiveness of the proposed approach.
Date Created
2016
Contributors
- Liu, Yunzhong (Author)
- Chen, Yi (Thesis advisor)
- Liu, Huan (Thesis advisor)
- Li, Baoxin (Committee member)
- Davulcu, Hasan (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
x, 92 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.39461
Statement of Responsibility
by Yunzhong Liu
Description Source
Viewed on September 23, 2016
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 86-92)
Field of study: Computer science
System Created
- 2016-08-01 08:04:09
System Modified
- 2021-08-30 01:21:58
- 3 years 2 months ago
Additional Formats