154763-Thumbnail Image.png
Description
In-situ fatigue damage diagnosis and prognosis is a challenging problem for both metallic and composite materials and structures. There are various uncertainties arising from material properties, component geometries, measurement noise, feature extraction techniques, and modeling errors. It is essential to

In-situ fatigue damage diagnosis and prognosis is a challenging problem for both metallic and composite materials and structures. There are various uncertainties arising from material properties, component geometries, measurement noise, feature extraction techniques, and modeling errors. It is essential to manage and incorporate these uncertainties in order to achieve accurate damage detection and remaining useful life (RUL) prediction.

The aim of this study is to develop an integrated fatigue damage diagnosis and prognosis framework for both metallic and composite materials. First, Lamb waves are used as the in-situ damage detection technique to interrogate the damaged structures. Both experimental and numerical analysis for the Lamb wave propagation within aluminum are conducted. The RUL of lap joints under variable and constant fatigue loading is predicted using the Bayesian updating by incorporating damage detection information and various sources of uncertainties. Following this, the effect of matrix cracking and delamination in composite laminates on the Lamb wave propagation is investigated and a generalized probabilistic delamination size and location detection framework using Bayesian imaging method (BIM) is proposed and validated using the composite fatigue testing data. The RUL of the open-hole specimen is predicted using the overall stiffness degradation under fatigue loading. Next, the adjoint method-based damage detection framework is proposed considering the physics of heat conduction or elastic wave propagation. Different from the classical wave propagation-based method, the received signal under pristine condition is not necessary for estimating the damage information. This method can be successfully used for arbitrary damage location and shape profiling for any materials with higher accuracy and resolution. Finally, some conclusions and future work are generated based on the current investigation.
Reuse Permissions


  • Download restricted.
    Download count: 2

    Details

    Title
    • Probabilistic fatigue damage diagnostics and prognostics for metallic and composite materials
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 150-158)
    • Field of study: Mechanical engineering

    Citation and reuse

    Statement of Responsibility

    by Tishun Peng

    Machine-readable links