Full metadata
Title
Investigations into the occurrence, formation and fate of N-nitrosodimethylamine (NDMA) in air and water
Description
N-Nitrosodimethylamine (NDMA), a probable human carcinogen, has been found in clouds and fogs at concentration up to 500 ng/L and in drinking water as disinfection by-product. NDMA exposure to the general public is not well understood because of knowledge gaps in terms of occurrence, formation and fate both in air and water. The goal of this dissertation was to contribute to closing these knowledge gaps on potential human NDMA exposure through contributions to atmospheric measurements and fate as well as aqueous formation processes.
Novel, sensitive methods of measuring NDMA in air were developed based on Solid Phase Extraction (SPE) and Solid Phase Microextraction (SPME) coupled to Gas Chromatography-Mass Spectrometry (GC-MS). The two measuring techniques were evaluated in laboratory experiments. SPE-GC-MS was applicable in ambient air sampling and NDMA in ambient air was found in the 0.1-13.0 ng/m3 range.
NDMA photolysis, the main degradation atmospheric pathway, was studied in the atmospheric aqueous phase. Water soluble organic carbon (WSOC) was found to have more impact than inorganic species on NDMA photolysis by competing with NDMA for photons and therefore could substantially increase the NDMA lifetime in the atmosphere. The optical properties of atmospheric WSOC were investigated in aerosol, fog and cloud samples and showed WSOC from atmospheric aerosols has a higher mass absorption efficiency (MAE) than organic matter in fog and cloud water, resulting from a different composition, especially in regards of volatile species, that are not very absorbing but abundant in fogs and clouds.
NDMA formation kinetics during chloramination were studied in aqueous samples including wastewater, surface water and ground water, at two monochloramine concentrations. A simple second order NDMA formation model was developed using measured NDMA and monochloramine concentrations at select reaction times. The model fitted the NDMA formation well (R2 >0.88) in all water matrices. The proposed model was then optimized and applied to fit the data of NDMA formation from natural organic matter (NOM) and model precursors in previously studies. By determining the rate constants, the model was able to describe the effect of water conditions such as DOC and pH on NDMA formation.
Novel, sensitive methods of measuring NDMA in air were developed based on Solid Phase Extraction (SPE) and Solid Phase Microextraction (SPME) coupled to Gas Chromatography-Mass Spectrometry (GC-MS). The two measuring techniques were evaluated in laboratory experiments. SPE-GC-MS was applicable in ambient air sampling and NDMA in ambient air was found in the 0.1-13.0 ng/m3 range.
NDMA photolysis, the main degradation atmospheric pathway, was studied in the atmospheric aqueous phase. Water soluble organic carbon (WSOC) was found to have more impact than inorganic species on NDMA photolysis by competing with NDMA for photons and therefore could substantially increase the NDMA lifetime in the atmosphere. The optical properties of atmospheric WSOC were investigated in aerosol, fog and cloud samples and showed WSOC from atmospheric aerosols has a higher mass absorption efficiency (MAE) than organic matter in fog and cloud water, resulting from a different composition, especially in regards of volatile species, that are not very absorbing but abundant in fogs and clouds.
NDMA formation kinetics during chloramination were studied in aqueous samples including wastewater, surface water and ground water, at two monochloramine concentrations. A simple second order NDMA formation model was developed using measured NDMA and monochloramine concentrations at select reaction times. The model fitted the NDMA formation well (R2 >0.88) in all water matrices. The proposed model was then optimized and applied to fit the data of NDMA formation from natural organic matter (NOM) and model precursors in previously studies. By determining the rate constants, the model was able to describe the effect of water conditions such as DOC and pH on NDMA formation.
Date Created
2016
Contributors
- Zhang, Jinwei (Author)
- Herckes, Pierre (Thesis advisor)
- Westerhoff, Paul (Thesis advisor)
- Fraser, Matthew (Committee member)
- Shock, Everett (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xii, 135 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.38754
Statement of Responsibility
by Jinwei Zhang
Description Source
Viewed on October 13, 2016
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 111-124)
Field of study: Chemistry
System Created
- 2016-06-01 08:59:23
System Modified
- 2021-08-30 01:22:43
- 3 years 2 months ago
Additional Formats