Full metadata
Title
Climate-specific degradation rate and linearity analysis of photovoltaic power plants using performance ratio, performance index, and raw kWh methods
Description
In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due to this fact and to calculate LCOE (levelized cost of energy), it is understandably becoming more important to comprehend the behavior of these systems as a whole by calculating two key data: the rate at which modules are degrading in the field; the trend (linear or nonlinear) in which the degradation is occurring. As opposed to periodical in field intrusive current-voltage (I-V) measurements, non-intrusive measurements are preferable to obtain these two key data since owners do not want to lose money by turning their systems off, as well as safety and breach of installer warranty terms. In order to understand the degradation behavior of PV systems, there is a need for highly accurate performance modeling. In this thesis 39 commercial PV power plants from the hot-dry climate of Arizona are analyzed to develop an understanding on the rate and trend of degradation seen by crystalline silicon PV modules. A total of three degradation rates were calculated for each power plant based on three methods: Performance Ratio (PR), Performance Index (PI), and raw kilowatt-hour. These methods were validated from in field I-V measurements obtained by Arizona State University Photovoltaic Reliability Lab (ASU-PRL). With the use of highly accurate performance models, the generated degradation rates may be used by the system owners to claim a warranty from PV module manufactures or other responsible parties.
Date Created
2016
Contributors
- Raupp, Christopher (Author)
- Tamizhmani, Govindasamy (Thesis advisor)
- Srinivasan, Devarajan (Committee member)
- Rogers, Bradley (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xvii, 97 pages : illustrations (chiefly color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.38721
Statement of Responsibility
by Christopher Raupp
Description Source
Viewed on October 20, 2016
Level of coding
full
Note
thesis
Partial requirement for: M.S., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 82-83)
Field of study: Engineering
System Created
- 2016-06-01 08:58:00
System Modified
- 2021-08-30 01:22:55
- 3 years 2 months ago
Additional Formats