154624-Thumbnail Image.png
Description
Here I document the breadth of the CAP (Cysteine-RIch Secretory Proteins (CRISP), Antigen 5 (Ag5), and the Pathogenesis-Related 1 (PR)) protein superfamily and trace some of the major events in the evolution of this family with particular focus on vertebrate

Here I document the breadth of the CAP (Cysteine-RIch Secretory Proteins (CRISP), Antigen 5 (Ag5), and the Pathogenesis-Related 1 (PR)) protein superfamily and trace some of the major events in the evolution of this family with particular focus on vertebrate CRISP proteins. Specifically, I sought to study the origin of these CAP subfamilies using both amino acid sequence data and gene structure data, more precisely the positions of exon/intron borders within their genes. Counter to current scientific understanding, I find that the wide variety of CAP subfamilies present in mammals, where they were originally discovered and characterized, have distinct homologues in the invertebrate phyla contrary to the common assumption that these are vertebrate protein subfamilies. In addition, I document the fact that primitive eukaryotic CAP genes contained only one exon, likely inherited from prokaryotic SCP-domain containing genes which were, by nature, free of introns. As evolution progressed, an increasing number of introns were inserted into CAP genes, reaching 2 to 5 in the invertebrate world, and 5 to 15 in the vertebrate world. Lastly, phylogenetic relationships between these proteins appear to be traceable not only by amino acid sequence homology but also by preservation of exon number and exon borders within their genes.
Reuse Permissions


  • Download restricted.

    Details

    Title
    • Evolutionary analysis of the CAP superfamily of proteins using amino acid sequences and splice sites
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S., Arizona State University, 2016
    • bibliography
      Includes bibliographical references (pages 81-90)
    • Field of study: Biology

    Citation and reuse

    Statement of Responsibility

    by Anup Abraham

    Machine-readable links