Description
Polymer matrix composites (PMCs) are attractive structural materials due to their high stiffness to low weight ratio. However, unidirectional PMCs have low shear strength and failure can occur along kink bands that develop on compression due to plastic microbuckling that carry strains large enough to induce nonlinear matrix deformation. Reviewing the literature, a large fraction of the existing work is for uniaxial compression, and the effects of stress gradients, such as those present during bending, have not been as well explored, and these effects are bound to make difference in terms of kink band nucleation and growth. Furthermore, reports on experimental measurements of strain fields leading to and developing inside these bands in the presence of stress gradients are also scarce and need to be addressed to gain a full understanding of their behavior when UDCs are used under bending and other spatially complex stress states.
In a light to bridge the aforementioned gaps, the primary focus of this work is to understand mechanisms for kink band evolution under an influence of stress-gradients induced during bending. Digital image correlation (DIC) is used to measure strains inside and around the kink bands during 3-point bending of samples with 0°/90° stacking made of Ultra-High Molecular Weight Polyethylene Fibers. Measurements indicate bands nucleate at the compression side and propagate into the sample carrying a mixture of large shear and normal strains (~33%), while also decreasing its bending stiffness. Failure was produced by a combination of plastic microbuckling and axial splitting. The microstructure of the kink bands was studied and used in a microstructurally explicit finite element model (FEM) to analyze stresses and strains at ply level in the samples during kink band evolution, using cohesive zone elements to represent the interfaces between plies. Cohesive element properties were deduced by a combination of delamination, fracture and three-point bending tests used to calibrate the FEMs. Modeling results show that the band morphology is sensitive to the shear and opening properties of the interfaces between the plies.
In a light to bridge the aforementioned gaps, the primary focus of this work is to understand mechanisms for kink band evolution under an influence of stress-gradients induced during bending. Digital image correlation (DIC) is used to measure strains inside and around the kink bands during 3-point bending of samples with 0°/90° stacking made of Ultra-High Molecular Weight Polyethylene Fibers. Measurements indicate bands nucleate at the compression side and propagate into the sample carrying a mixture of large shear and normal strains (~33%), while also decreasing its bending stiffness. Failure was produced by a combination of plastic microbuckling and axial splitting. The microstructure of the kink bands was studied and used in a microstructurally explicit finite element model (FEM) to analyze stresses and strains at ply level in the samples during kink band evolution, using cohesive zone elements to represent the interfaces between plies. Cohesive element properties were deduced by a combination of delamination, fracture and three-point bending tests used to calibrate the FEMs. Modeling results show that the band morphology is sensitive to the shear and opening properties of the interfaces between the plies.
Details
Title
- Mechanisms for kink band evolution in polymer matrix composites: a digital image correlation and finite element study
Contributors
- Patel, Jay K (Author)
- Peralta, Pedro D (Thesis advisor)
- Oswald, Jay (Committee member)
- Jiang, Hanqing (Committee member)
- Solanki, Kiran (Committee member)
- Ayyar, Adarsh (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Subjects
- Mechanical Engineering
- Mechanics
- cohesive zone modeling (CZM)
- deformation/failure mechanisms
- Digital image correlation
- kink bands in polymer matrix composites (PMC)
- Microstructurally explicit finite element model
- stress gradients
- Polymeric composites
- Deformations (Mechanics)
- Digital image correlation
- Finite element method
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2016
- bibliographyIncludes bibliographical references (pages 157-164)
- Field of study: Mechanical engineering
Citation and reuse
Statement of Responsibility
by Jay K. Patel