Full metadata
Title
Nano-engineering metamaterials and metafilms for high-efficiency solar energy harvesting and conversion
Description
The energy crisis in the past decades has greatly boosted the search for alternatives to traditional fossil foils, and solar energy stands out as an important candidate due to its cleanness and abundance. However, the relatively low conversion efficiency and energy density strongly hinder the utilization of solar energy in wider applications. This thesis focuses on employing metamaterials and metafilms to enhance the conversion efficiency of solar thermal, solar thermophotovoltaic (STPV) and photovoltaic systems.
A selective metamaterial solar absorber is designed in this thesis to maximize the absorbed solar energy and minimize heat dissipation through thermal radiation. The theoretically designed metamaterial solar absorber exhibits absorptance higher than 95% in the solar spectrum but shows emittance less than 4% in the IR regime. This metamaterial solar absorber is further experimentally fabricated and optically characterized. Moreover, a metafilm selective absorber with stability up to 600oC is introduced, which exhibits solar absorptance higher than 90% and IR emittance less than 10%.
Solar thermophotovoltaic energy conversion enhanced by metamaterial absorbers and emitters is theoretically investigated in this thesis. The STPV system employing selective metamaterial absorber and emitter is investigated in this work, showing its conversion efficiency between 8% and 10% with concentration factor varying between 20 and 200. This conversion efficiency is remarkably enhanced compared with the conversion efficiency for STPV system employing black surfaces (<2.5%).
Moreover, plasmonic light trapping in ultra-thin solar cells employing concave grating nanostructures is discussed in this thesis. The plasmonic light trapping inside an ultrathin GaAs layer in the film-coupled metamaterial structure is numerically demonstrated. By exciting plasmonic resonances inside this structure, the short-circuit current density for the film-coupled metamaterial solar cell is three times the short-circuit current for a free-standing GaAs layer.
The dissertation is concluded by discussing about the future work on selective solar thermal absorbers, STPV/TPV systems and light trapping structures. Possibilities to design and fabricate solar thermal absorber with better thermal stability will be discussed, the experimental work of TPV system will be conducted, and the light trapping in organic and perovskite solar cells will be looked into.
A selective metamaterial solar absorber is designed in this thesis to maximize the absorbed solar energy and minimize heat dissipation through thermal radiation. The theoretically designed metamaterial solar absorber exhibits absorptance higher than 95% in the solar spectrum but shows emittance less than 4% in the IR regime. This metamaterial solar absorber is further experimentally fabricated and optically characterized. Moreover, a metafilm selective absorber with stability up to 600oC is introduced, which exhibits solar absorptance higher than 90% and IR emittance less than 10%.
Solar thermophotovoltaic energy conversion enhanced by metamaterial absorbers and emitters is theoretically investigated in this thesis. The STPV system employing selective metamaterial absorber and emitter is investigated in this work, showing its conversion efficiency between 8% and 10% with concentration factor varying between 20 and 200. This conversion efficiency is remarkably enhanced compared with the conversion efficiency for STPV system employing black surfaces (<2.5%).
Moreover, plasmonic light trapping in ultra-thin solar cells employing concave grating nanostructures is discussed in this thesis. The plasmonic light trapping inside an ultrathin GaAs layer in the film-coupled metamaterial structure is numerically demonstrated. By exciting plasmonic resonances inside this structure, the short-circuit current density for the film-coupled metamaterial solar cell is three times the short-circuit current for a free-standing GaAs layer.
The dissertation is concluded by discussing about the future work on selective solar thermal absorbers, STPV/TPV systems and light trapping structures. Possibilities to design and fabricate solar thermal absorber with better thermal stability will be discussed, the experimental work of TPV system will be conducted, and the light trapping in organic and perovskite solar cells will be looked into.
Date Created
2016
Contributors
- Wang, Hao (Author)
- Wang, Liping (Thesis advisor)
- Phelan, Patrick (Committee member)
- Wang, Robert (Committee member)
- Dai, Lenore (Committee member)
- Rykaczewski, Konrad (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
xiv, 128 pages : color illustrations
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.38593
Statement of Responsibility
by Hao Wang
Description Source
Viewed on July 12, 2016
Level of coding
full
Note
thesis
Partial requirement for: Ph.D., Arizona State University, 2016
bibliography
Includes bibliographical references (pages 120-128)
Field of study: Mechanical engineering
System Created
- 2016-06-01 08:43:47
System Modified
- 2021-08-30 01:23:42
- 3 years 2 months ago
Additional Formats